Skip to main content
Log in

Bacterial volatiles from mealybug honeydew exhibit kairomonal activity toward solitary endoparasitoid Anagyrus dactylopii

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Anagyrus dactylopii (Howard) (Hymenoptera: Encyrtidae) is a solitary koinobiont endoparasitoid of grapevine mealybugs and has been reported to parasitize 70% of mealybug populations naturally. In the present study, we have isolated and identified by employing a 16S rRNA technique, a total of ten cultivable bacteria from the honeydew of two species of grapevine mealybugs, Maconellicoccus hirsutus and Nipaecoccus viridis. In the honeydew of M. hirsutus, seven bacteria were found, which included Micrococcus luteus, Kocuria rosea, Bacillus aquimaris, Exiguobacterium aquaticum, Staphylococcus pasteuri, Bacillus oceanisediminis and Bacillus flexus. From the honeydew of N. viridis, three bacteria, viz. Bacillus firmus, Microbacterium testaceum and Pesudomonas oryzihabitans, could be recovered. Further, we have collected the headspace from 72 h active cultures of these honeydew-associated bacteria by sorption over adsorbent trap made up of 0.2 g porapak using dynamic headspace sampling technique with pull and push system and tested the behavioral responses of mated females of A. dactylopii to these volatiles in a Y-tube olfactometer. The mated females positively responded to volatiles from five bacteria, which included only two bacteria associated with the honeydew of M. hirsutus, i.e., K. rosea, and S. pasteuri and all the three bacteria from honeydew of N. viridis. This indicates an ability of A. dactylopii to exploit cues associated with the mealybug honeydew for host location. The GC–MS analysis of bacterial headspace revealed six volatile organic compounds (VOCs), viz. propanoic acid, 2-methyl-2,2-dimethyl-1-(2-hydroxy-1-methylethyl) propyl ester; tetradecane; dodecane; 10-heptadecen-8-ynoic acid, methyl ester; 10,13-octadecadiynoic acid, methyl ester and limonen-6-ol, pivalate. Interestingly, limonen-6-ol, pivalate has been found as a common constituent of volatiles from all the three bacteria that were isolated from honeydew of N. viridis. The possible exploitation of bacterial VOCs in enhancing populations of A. dactylopii and promoting conservation biological control of mealybugs in grape vineyards is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amala U, Yadav DS, Bhosle AM (2013) Studies on parasitoid complex of mealybug infesting grapes in Maharashtra. J Appl Hortic 15(2):117–119

    Google Scholar 

  • Amala U, Chinniah C, Sawant IS, Muthukrishnan N, Muthiah C (2014) Survey for grapevine mealybug incidence and their natural enemies in Tamil Nadu and Maharashtra. Biopestic Int 10(2):169–175

    Google Scholar 

  • Bargen H, Saudhof K, Poehling HM (1998) Prey finding by larvae and adult females of Episyrphus balteatus. Entomol Exp Appl 87:245–254

    Article  Google Scholar 

  • Bertschy C, Turlings TCJ, Bellotti A, Dorn S (2000) Host stage preference and sex allocation in Aenasius vexans, an encyrtid parasitoid of the cassava mealybug. Entomol Exp Appl 95:283–291

    Article  Google Scholar 

  • Blackmer JL, Byrne DN (1999) The effect of Bemisia tabaci on amino acid balance in Cucumis melo. Entomol Exp Appl 87:245–254

    Google Scholar 

  • Burger JMS, Kormany A, Van Lenteren JC, Lem V (2005) Importance of host feeding for parasitoids that attack honeydew-producing hosts. Entomol Exp Appl 117:147–154

    Article  Google Scholar 

  • Chong JH, Oetting RD (2006) Host stage selection of the mealybug parasitoid Anagyrus spec. nov near sinope. Entomol Exp Appl 121:39–50

    Article  Google Scholar 

  • CIB&RC (2018) Major uses of pesticides (Insecticides) (Registered under the Insecticides Act, 1968). Central Insecticide Board and Registration Committee (CIB&RC), Directorate of Plant Protection, Quarantine and Storage, Faridabad-121 001, Haryana (Ministry of Agriculture and Farmers Welfare, Government of India). Last updated 31st May, 2018. http://ppqs.gov.in/divisions/cib-rc/major-uses-of-pesticides. Accessed 01 May 2019

  • Conti E, Colazza S (2012) Chemical ecology of egg parasitoids associated with true bugs. Psyche (Camb Mass) 2012:651015

    Google Scholar 

  • Crafts-Bradner SJ (2002) Plant nitrogen status rapidly alters amino acid metabolism an excretion in Bemisia tabaci. J Insect Physiol 48:33–41

    Article  Google Scholar 

  • Crow WT (2014) Effect of a commercial formulation of Bacillus firmus I-1582 on golf course Bermuda grass infested with Belonolaimus longicuadatus. J Nematol 46(4):331–335

    PubMed  PubMed Central  Google Scholar 

  • Davidson EW, Rosell RCR, Hendrix DL (2000) Culturable bacteria associated with the whitefly, Bemisia argentifolii (Homoptera: Aleyrodidae). Florida Entomol 82:159–171

    Article  Google Scholar 

  • Dey P, Chaudhari TK (2016) Comparative phytochemical profiling and effects of Nerium oleander extracts on the activities of murine peritoneal macrophages. Arch Biol Sci 68(3):515–531

    Article  Google Scholar 

  • Downes FP, Ito K (eds) (2001) Compendium of methods for the microbiological examination of foods, 4th edn. American Public Health Association, Washington, DC, p 676

    Google Scholar 

  • Fand BB, Gautam RD, Suroshe SS (2011) Suitability of various stages of mealybug, Phenacoccus solenopsis (Homoptera: Pseudococcidae) for development and survival of the solitary endoparasitoid, Aenasius bambawalei (Hymenoptera: Encyrtidae). Biocontrol Sci Technol 21(1):51–55

    Article  Google Scholar 

  • Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ (2008) Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74(8):2461–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grasswitz TR, Paine TD (1993) Influence of physiological state and experience on the responsiveness of Lysiphlebus testaceipes (Cresson) (Hymenoptera: Aphididae) to aphid honeydew and to host plants. J Insect Behav 6:511–528

    Article  Google Scholar 

  • Greenberg EP (1997) Quorum sensing in gram-negative bacteria. ASM News 63:371–377

    Google Scholar 

  • Grenier AM, Nardon C, Rahbe Y (1994) Observations on the microorganisms occurring in the gut of the pea aphid Acyrthosiphon pisum. Entomol Exp Appl 70:91–96

    Article  Google Scholar 

  • Hadi MY, Mohammed GJ, Hameed IH (2016) Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography–mass spectrometry. J Pharmacogn Phytochem 8(2):8–24

    CAS  Google Scholar 

  • Hagvar EB, Hofsvang T (1991) Aphid parasitoids (Hymenoptera: Aphelinidae): biology, host selection and use in biological control. Biocontrol News Inf 12:13–41

    Google Scholar 

  • Helman Y, Chernin L (2015) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol 16(3):316–329

    Article  PubMed  Google Scholar 

  • Himanen SJ, Li T, Blande JD, Holopainen JK (2017) Volatile organic compounds in integrated pest management of Brassica oilseedcrops. In: Reddy GVP (ed) Integrated management of insect pests on canola and other Brassica oilseed crops. CABI Publishing, Wallingford, pp 281–294

    Chapter  Google Scholar 

  • Hussain A, Forrest JMS, Dixon JFG (1974) Sugar, organic acid, phenolic acid, and plant growth regulator content of extracts of the honeydew of the aphid Myzus persicae and of its host plant Raphanus sativus. Ann Appl Entomol 78:65–73

    CAS  Google Scholar 

  • Hussein HM (2016) Analysis of trace heavy metals and volatile chemical compounds of Lepidium sativum using atomic absorption spectroscopy, gas chromatography–mass spectrometric and fourier-transform infrared spectroscopy. Res J Pharm Biol Chem Sci 7(4):2529–2555

    CAS  Google Scholar 

  • James DG (2003) Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environ Entomol 32:977–982

    Article  CAS  Google Scholar 

  • James DG (2005) Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J Chem Ecol 31(3):481–495

    Article  CAS  PubMed  Google Scholar 

  • James GJ, Price TS (2004) Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J Chem Ecol 30(8):1613–1628

    Article  CAS  PubMed  Google Scholar 

  • Kadhim MJ, Mohammed GJ, Hussein HM (2016) Analysis of bioactive metabolites from Candida albicans using GC–MS and evaluation of antibacterial activity. Int J Pharm Clin Res 8(7):655–670

    Google Scholar 

  • Kamala Jayanthi PD, Aurade RM, Kempraj V, Roy TK, Shivashankara KS, Verghese A (2015) Salicylic acid induces changes in mango fruit that affect oviposition behavior and development of the Oriental Fruit Fly, Bactrocera dorsalis. PLoS ONE 10(9):e0139124. https://doi.org/10.1371/journal.pone.0139124

    Article  CAS  Google Scholar 

  • Kandi V, Palange P, Vaish R, Bhatti AB, Kale V, Kandi MR, Bhoomagiri MR (2016) Emerging bacterial infection: identification and clinical significance of Kocuria species. Cureus 8(8):e731

    PubMed  PubMed Central  Google Scholar 

  • Kaplan I (2012) Attracting carnivorous arthropods with plant volatiles: the future of biocontrol or playing with fire? Biol Control 60:77–89

    Article  Google Scholar 

  • Kassem MES, Afifi MS, Salib Sakka OK, Sleem AA (2014) Chemical composition of the lipophilic fraction of Livistona australis R.Br. Mart., (Arecaceae) fruit pulp and evaluation of its antioxidant and antihyperlipidemic activities. J Nat Prod 7:210–221

    Google Scholar 

  • Kesavarthini PS, Rani S, Vishwanath BA (2019) Phytochemical screening and assessing the bioactive constituents of Lepisanthes tetraphylla (vahl) Radlk through GC–MS analysis. J Glob Pharm Technol 11(2):10–19

    CAS  Google Scholar 

  • Kodama K, Kimura N, Komagata K (1985) Two new species of Pseudomonas; P. oryzihabitans isolated from rice paddy and clinical specimens, and P. luteola from clinical specimens. Int J Syst Bacteriol 35:467–474

    Article  CAS  Google Scholar 

  • Kraaijeveld AR, Van Alphen JJM, Godfray HCJ (1998) The coevolution of host resistance and parasitoid virulence. Parasitol 116:S29–S45

    Article  Google Scholar 

  • Leroy PD, Sabri A, Heuskin S, Thonart P, Lognay G, Verheggen FJ, Francis F, Brostaux Y, Felton GW, Haubruge E (2011) Microorganisms from aphid honeydew attract and enhance the efficacy of natural enemies. Nat Commun 2:348. https://doi.org/10.1038/ncomms1347

    Article  CAS  PubMed  Google Scholar 

  • Leroy PD, Heuskin S, Sabri A, Verheggen F, Farmakidis J, Lognay G, Thonart P, Wathelet JP, Brostaux Y, Haubruge E (2012) Honeydew volatile emission acts as a kairomonal message for the Asian lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). Insect Sci 19(4):498–506

    Article  CAS  Google Scholar 

  • Mandour NS, Shunxiang R, Baoli Q, Wackers FL (2005) Arrestment response of Eretmocerus species (Hymenoptera; Aphelinidae) near Furuhashii to honeydew of Bemisia tabaci (Homoptera: Aleyrodidae) and its component carbohydrates. In: Proceedings of the sixth Arabian conference for horticulture, Islamia, Egypt, vol 6, pp 311–319

  • Mani M, Kulkarni NS (2007) Citrus mealybug Planococcus citri (Risso) Homoptera; Pseudococcidae)—a major pest of grapes in India. Entomon 32:235–236

    Google Scholar 

  • Mani M, Shivaraju C (2016) Mealybugs and their management in agricultural and horticultural crops, 1st edn. Springer India, New Delhi. https://doi.org/10.1007/978-81-322-2677-2

    Book  Google Scholar 

  • Mani M, Thondarya TS, Singh SP (1987) Record of natural enemies of the grape mealybug Maconellicoccus hirsutus (Green). Curr Sci 56:624–625

    Google Scholar 

  • Mani M, Shivaraju C, Kulkarni NS (2014) The grape entomology. Springer, New York, p 202. https://doi.org/10.1007/978-81-322-1617-9

    Book  Google Scholar 

  • Manjuraj TM (1985) Leptomastix dactylopii in India. Biocontrol News Inf 6:297

    Google Scholar 

  • McBrien HL, Millar JG, Rice RE, Mcelfresh JS, Cullen E, Zalom FG (2002) Sex attractant pheromone of the red-shouldered stink bug Thyanta pallidovirens: a pheromone blend with multiple redundant components. J Chem Ecol 28(9):1797–1818

    Article  CAS  PubMed  Google Scholar 

  • Mendoza AR, Kiewnick S, Sikora RA (2008) In vitro activity of Bacillus firmus against burrowing nematode Rodophilus similis, the rook knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci Technol 18:377–389

    Article  Google Scholar 

  • Mittler TE (1958) Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin), (Homoptera: Aphididae). J Exp Biol 35:74–84

    CAS  Google Scholar 

  • Moreira JS (2015) Endocarditis by Kocuria rosea in an immunocompetent child. Braz J Infect Dis 19(1):82–84

    Article  PubMed  Google Scholar 

  • Morohoshi T, Someya N, Ikeda T (2009) Novel N-acylhomoserine lactone-degrading bacteria isolated from the leaf surface of Solanum tuberosum and their quorum-quenching properties. Biosci Biotechnol Biochem 73:2124–2127

    Article  CAS  PubMed  Google Scholar 

  • Morohoshi T, Wang WZ, Someya N, Ikeda T (2011) Microbacterium testaceum StL-B037, an N-acylhomoserine lactone degrading bacterium isolated from potato leaves. J Bacteriol 193(8):2072–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nezhadali A, Akbarpour M, Shirvans BZ (2008) Chemical composition of the essential oil from the aerial parts of Artemisia herba. E-J Chem 5(3):557–561

    Article  CAS  Google Scholar 

  • NIST Standard Reference Database 1A v17 (2018) NIST/EPA/NIH Mass Spectral Library with Search Program. Data Version: NIST v17 Software Version: 2.3. https://www.nist.gov/srd/nist-standard-reference-database-1a-v17. Accessed 04 Jan 2018

  • NRCG (2018) Annexure-5. List of chemicals with CIB&RC label claim for use in grapes, Revised on 24th September, 2018. ICAR-National Research Centre for Grapes, Pune, Maharashtra, India. https://nrcgrapes.icar.gov.in/zipfiles/Annexure%205.pdf. Accessed 26 Apr 2019

  • Orre GUS, Wratten SD, Jonsson M, Hale RJ (2010) Effects of an herbivore-induced plant volatiles on arthropods from three trophic levels in brassicas. Biol Control 53:62–67

    Article  Google Scholar 

  • Orre GUS, Wratten SD, Jonsson M, Simpson M, Hale R (2013) ‘Attract and reward’: combining a herbivore-induced plant volatile with floral resource supplementation—multi-trophic level effects. Biol Control 64:106–115

    Article  CAS  Google Scholar 

  • Peri E, Cusumano A, Agrò A, Colazza S (2011) Behavioral response of the egg parasitoid Ooencyrtus telenomicida to host-related chemical cues in a tritrophic perspective. Biocontrol 56:163–171

    Article  Google Scholar 

  • Qin K, Zheng L, Cai H, Cao G, Lou Y, Lu T, Shu Y, Zhou W, Cai B (2013) Characterization of chemical composition of Pericarpium citri Reticulatae volatile oil by comprehensive two-dimensional gas chromatography with high-resolution time of flight mass spectrometry. Evid Based Complement Alternat Med. https://doi.org/10.1155/2013/237541

    Article  PubMed  PubMed Central  Google Scholar 

  • Robacker DC, Flath RA (1995) Attractants from Staphylococcus aureus cultures for Mexican fruit fly, Anastrepha ludens. J Chem Ecol 21(11):1861–1874

    Article  CAS  PubMed  Google Scholar 

  • Robacker DC, Moreno DS (1995) Protein feeding attenuates attraction of Mexican fruit flies Diptera: Tephritidae) volatile bacterial metabolites. Fla Entomol 78:62–69

    Article  CAS  Google Scholar 

  • Rondoni G, Bertoldi V, Malek R, Foti MC, Peri E, Maistrello L, Haye T, Conti E (2017) Native egg parasitoids recorded from the invasive Halyomorpha halys successfully exploit volatiles emitted by the plant–herbivore complex. J Pest Sci 90(4):1087–1095

    Article  Google Scholar 

  • Roopa HK, Asokan R, Krishna Kumar NK, Mahmood R (2016) Estimation of sugars and volatiles in the honeydew of Bemisia tabaci genetic groups Meam-I and Asia-I. J Biosci Biotechnol Disc 1:66–73

    Article  Google Scholar 

  • Rosenstiel TN, Shortlidge EE, Melnychenko AN, Pankow JF, Eppley SM (2012) Sex-specific volatile compounds influence microarthropod-mediated fertilization of moss (Supplementary information). Nature 489:431–433

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94(3):441–448

    Article  CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Singh K, Upadhyay BS (2000) Honeydew as a food source for an aphid parasitoid Lipolexis scutellaris Mackauer (Hymenoptera: Braconidae). J Adv Zool 21(2):77–83

    Google Scholar 

  • Sreerag RS, Jayaprakas CA, Ragesh L, Nishanth Kumar S (2014) Endosymbiotic bacteria associated with the mealybug, Rhizoecus amorphophalli (Hemiptera: Pseudococcidae). Int Sch Res Not 2014:8. https://doi.org/10.1155/2014/268491

    Article  Google Scholar 

  • Stapel JO, Cortesero AM, De Moraes CM, Tumlinson JH, Lewis WJ (1997) Extrafloral nectar, honeydew and sucrose effects on searching behavior and efficiency of Microplitis croceips (Hymenoptera: Braconidiae) in cotton. Environ Entomol 26:617–623

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis, version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tena D, Fernandez C (2015) Pseudomonas oryzihabitans: an unusual cause of skin and soft tissue infection. Infect Dis 47(11):820–824

    CAS  Google Scholar 

  • Thibout E, Guillot JF, Auger J (1993) Microorganisms are involved in the production of volatile kairomones affecting the host seeking behavior of Diadromus pulchelus, a parasitoid of Acrolepiosis assectella. Physiol Entomol 18:176–182

    Article  CAS  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Rose USR, Schnitzler JP (2006) Techniques for molecular analysis: practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  CAS  PubMed  Google Scholar 

  • Uefune M, Choh Y, Abe J, Shiojiri K, Sano K, Takabayashi J (2012) Application of synthetic herbivore-induced plant volatiles causes increased parasitism of herbivores in the field. J Appl Entomol 136:561–567

    Article  CAS  Google Scholar 

  • Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum quenching: the yin and yang of bacterial communication. ChemBioChem 10:205–216

    Article  CAS  PubMed  Google Scholar 

  • van Lenteren JC, Barbendrier D, Bigler F, Burgio G, Hokkanen HMT, Kuske S, Loomans AJM, Hokkanen M, Van Rijin PCJ, Thomas MB, Thomasini MG, Zeng QQ (2003) Environmental risk assessment of exotic natural enemies used in inundative biological control. Biocontrol 48:3–38

    Article  Google Scholar 

  • Verhulst NO, Beijleveld H, Knols BG, Takken W, Schraa G, Bouwmeester HJ, Smallegange RC (2009) Cultured skin microbiota attracts malaria mosquitoes. Malar J 8:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhulst NO, Mukabana WR, Takken W, Smallegange RC (2011) Human skin microbiota and their volatiles as odour baits for the malaria mosquito Anopheles gambiae. Entomol Exp Appl 139:170–179

    Article  Google Scholar 

  • Vijaybhaskar G, Elango V (2018) Characterization of bioactive compounds in alcoholic extraction of Hemidimus indicus and Alpenia officinarum using GC-MS technique. World J Sci Res 3(2):16–22

    Google Scholar 

  • von Bodman SB, Bauer WD, Coplin EL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • Wanlong Z, Fangyan Y, Zhengkun W (2017) Study of chemical communication based on urine in tree shrews Tupaia belangeri (Mammalia: Scandentia: Tupaiidae). Eur Zool J 84(1):512–524

    Article  CAS  Google Scholar 

  • Wilson RP, Richards R, Hartnell A, King AJ, Piasecka J, Gaihre YK et al (2014) A New approach to quantify semiochemical effects on insects based on energy landscapes. PLoS ONE 9(8):e106276. https://doi.org/10.1371/journal.pone.0106276

    Article  PubMed  PubMed Central  Google Scholar 

  • Woo KS, Choi JL, Kim BR, Kim JE, Kim KH, Kim JM, Han JY (2014) Outbreak of Pseudomonas oryzihabitans Pseudobacteremia related to contaminated equipment in an emergency room of a tertiary hospital in Korea. Infect Chemother 46(1):42–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuda T (2000) Role of semiochemicals in prey-locating behavior of a generalist predatory stink bug Eocanthecona furcellata (Wolff) (Heteroptera; Pentatomitidae). JARQ 34:15–20

    CAS  Google Scholar 

  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK (2002) Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbiol 68:2198–2208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the “Out Reach Programme on Sucking Pests” (ORP-SP), sponsored by Indian Council of Agricultural Research, New Delhi (Ministry of Agriculture, Government of India). The authors gratefully acknowledge the Director of ICAR-National Research Centre for Grapes, Pune (Maharashtra, India) for institutional support in execution of the present work. The authors are also thankful to Dr. Mohammad Hayat from Aligarh Muslim University, Aligarh (Uttar Pradesh, India) for his valuable insect identification service in confirming the identity of A. dactylopii.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babasaheb B. Fand.

Additional information

Communicated by J. Gross.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fand, B.B., Amala, U., Yadav, D.S. et al. Bacterial volatiles from mealybug honeydew exhibit kairomonal activity toward solitary endoparasitoid Anagyrus dactylopii. J Pest Sci 93, 195–206 (2020). https://doi.org/10.1007/s10340-019-01150-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-019-01150-4

Keywords

Navigation