Skip to main content
Log in

Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: useful clues for control strategies

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Successful management of invasive pests, such as Drosophila suzukii, relies on a fine understanding of their biology. Genomic and physiological studies have suggested that the invasive success of D. suzukii is strongly associated with its ability to overwinter in a reproductive diapause state. Here, we coupled field surveys with comparative morphology and genetics to increase our understanding of D. suzukii overwintering behavior and provide useful indications for its management. The results of a 4-year-long field trapping in an Italian mountain region indicate that D. suzukii is continuously captured during winter months and that the number of captures is correlated with temperature. Capture patterns are also contrasting between sexes: while females are more abundantly caught during winter and summer, males are more abundant in spring and autumn. We found that overwintering could occur not only in natural environments, such as woods, but also in anthropic shelters. Comparative morphology and genetics further indicate that spermathecae may play an important adaptive role during winter. Our results unveil complex winter biology in D. suzukii and highlight how the number of overwintering females is an earlier predictor of summer population size. We hence propose that in a given year infestation may be better forecasted by taking into account the captures of the previous winter. We recommend that control methods be diapause-aware. For instance, they should take place in late winter/early spring and close to natural environments, and not only in fruit ripening season and close to orchards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asplen MK, Anfora G, Biondi A, Choi DS, Chu D, Daane KM, Gibert P, Gutierrez AP, Hoelmer KA, Hutchison WD, Isaacs R, Jiang ZL, Kárpáti Z, Kimura MT, Pascual M, Philips CR, Plantamp C, Ponti L, Vétek G, Vogt H, Walton VM, Yu Y, Zappalà L, Desneux N (2015) Invasion biology of Spotted Wing Drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494

    Article  Google Scholar 

  • Ayrinhac A, Debat V, Gibert P, Kister AG, Legout H, Moreteau B, Vergilino R, David JR (2004) Cold adaptation in geographical populations of Drosophila melanogaster: phenotypic plasticity is more important than genetic variability. Funct Ecol 18:700–706

    Article  Google Scholar 

  • Briem F, Eben A, Gross J, Vogt H (2016) An invader supported by a parasite: mistletoe berries as a host for food and reproduction of Spotted Wing Drosophila in early spring. J Pest Sci. doi:10.1007/s10340-016-0739-6

    Google Scholar 

  • Cattel J, Kaur R, Gibert P, Martinez J, Fraimout A, Jiggins F et al (2016) Wolbachia in European populations of the invasive pest Drosophila suzukii: regional variation in infection frequencies. PLoS One 11(1):e0147766. doi:10.1371/journal.pone.0147766

    Article  PubMed  PubMed Central  Google Scholar 

  • Cha D, Adams T, Rogg H, Landolt PJ (2012) Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing Drosophila, Drosophila suzukii. J Chem Ecol 38:1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Cha DH, Hesler SP, Cowles RS, Vogt H, Loeb GM, Landolt PJ (2013) Comparison of a synthetic chemical lure and standard fermented baits for trapping Drosophila suzukii (Diptera: Drosophilidae). Environ Entomol 42:1052–1060

    Article  PubMed  Google Scholar 

  • Cha DH, Adams T, Werle CT, Sampson BJ, Adamczyk JJ Jr, Rogg H, Landolt PJ (2014) A four-component synthetic attractant for Drosophila suzukii (Diptera: Drosophilidae) isolated from fermented bait headspace. Pest Manag Sci 70:324–331

    Article  CAS  PubMed  Google Scholar 

  • Chapman RF (1998) The insects; structure and function, 4th edn. Cambridge University Press, Cambridge, p 403. ISBN 0-521-57048-4

  • Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65(1):149–160

    Google Scholar 

  • Cini A, Anfora G, Escudero-Colomar LA, Grassi A, Santosuosso U, Seljak G, Papini A (2014) Tracking the invasion of the alien fruit pest Drosophila suzukii in Europe. J Pest Sci 87:559–566

    Article  Google Scholar 

  • Dalton DT, Walton VM, Shearer PW, Walsh DB, Caprile J, Isaacs R (2011) Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States. Pest Manag Sci 67(11):1368–1374

    Article  CAS  PubMed  Google Scholar 

  • De Ros G, Conci S, Pantezzi T, Savini G (2015) The economic impact of invasive pest Drosophila suzukii on berry production in the Province of Trento, Italy. J Berry Res 5(2):89–96

    Article  Google Scholar 

  • Dekker T, Mansourian S, Revadi S, Lebreton S, Becher P, Angeli S, Rota-Stabelli O, Anfora G (2015) From pheromone to antagonist: cis-vaccenyl acetate loss in Drosophila suzukii reverses its role in sexual communication. Proc R Soc B 282:20143018

    Article  PubMed  PubMed Central  Google Scholar 

  • Denlinger DL (2002) Regulation of diapause. Annu Rev Entomol 47:93–122

    Article  CAS  PubMed  Google Scholar 

  • Denlinger DL (2008) Why study diapause? Entomol Res 38:1–9

    Article  Google Scholar 

  • Deprà M, Poppe JL, Schmitz HJ, De Toni DC, Valente VLS (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87:379–383

    Article  Google Scholar 

  • Gibert JM, Peronnet F, Schlotterer C (2007) Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genet 3:266–280

    Article  CAS  Google Scholar 

  • Grassi A, Anfora G, Maistri S, Maddalena G, De Cristofaro A, Savini G, Ioriatti C (2015) Development and efficacy of Droskidrink, a food bait for trapping Drosophila suzukii. IOBC Bull 109:197–204

    Google Scholar 

  • Hamby KA, Kwok RS, Zalom FG, Chiu JC (2013) Integrating circadian activity and gene expression profiles to predict chronotoxicity of Drosophila suzukii response to insecticides. PLoS One 8(7):e68472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamby KA, Bolda MP, Sheehan ME, Zalom FG (2014) Seasonal monitoring for Drosophila suzukii (Diptera: Drosophilidae) in California commercial raspberries. Environ Entomol 43(4):1008–1018

    Article  CAS  PubMed  Google Scholar 

  • Harris DW, Hamby KA, Wilson HE, Zalom FG (2014) Seasonal monitoring od Drosophila suzukii (Diptera: Drosophilidae) in a mixed fruit production system. J Asia Pac Entomol 17:857–864

    Article  Google Scholar 

  • Hodek I, Iperti G (1983) Sensitivity to photoperiod in relation to diapause in Semiadalia undecimnotata females. Entomol Exp Appl 34(1):9–12

    Article  Google Scholar 

  • Jakobs R, Gariepy TD, Sinclair BJ (2015) Adult plasticity of cold tolerance in a continental-temperate population of Drosophila suzukii. J Insect Physiol 79:1–9

    Article  CAS  PubMed  Google Scholar 

  • Kanzawa T (1939) Studies on Drosophila suzukii Mats. Yamanashi Agricultural Experimental Station, Kofu, pp 1–49

    Google Scholar 

  • Kimura MT (1988) Adaptation to temperate climates and evolution of over-wintering strategies in the Drosophila melanogaster species group. Evolution 42:1288–1297

    Article  Google Scholar 

  • Kimura MT (2004) Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140:442–449

    Article  PubMed  Google Scholar 

  • Kleiber JR, Unelius CR, Lee JC, Suckling DM, Qian MC, Bruck DJ (2014) Attractiveness of fermentation and related products to spotted wing drosophila (Diptera: Drosophilidae). Environ Entomol 43(2):439–447

    Article  CAS  PubMed  Google Scholar 

  • Knipling EF (1959) Sterile-male method of population control. Science 130:902–904

    Article  CAS  PubMed  Google Scholar 

  • Kvam E, Dahle J (2003) Pigmented melanocytes are protected against ultraviolet-A-induced membrane damage. J Investig Dermatol 121:564–569

    Article  CAS  PubMed  Google Scholar 

  • Landolt PJ, Adams T, Rogg H (2012) Trapping spotted wing drosophila, Drosophila suzukii (Matsumura), with combinations of vinegar and wine, and acetic acid and ethanol. J Appl Entomol 136:148–154

    Article  CAS  Google Scholar 

  • Laven H (1967) Eradication of Culex pipiens fatigans through cytoplasmic incompatibility. Nature 216:383–384

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zhao M, He P, Hidalgo M, Baker SD (2007) Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res 13:3731–3737

    Article  CAS  PubMed  Google Scholar 

  • Malta J, Martins GF, Marques AE, Games PD, Zanuncio JC, Baracat-Pereira MC, Fernandes Salomão TM et al (2014) Insights into the proteome of the Spermatheca of the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae). Fla Entomol 97(4):1856–1861

    Article  Google Scholar 

  • Mitsui H, Beppu K, Kimura MT (2010) Seasonal life cycles and resource uses of flower and fruit-feeding drosophilid flies (Diptera: Drosophilidae) in central Japan. Entomol Sci 13:60–67

    Article  Google Scholar 

  • Neubaum DM, Wolfner MF (1999) Wise, winsome or weird: mechanisms of sperm storage in female animals. Curr Top Dev Biol 41:67–97

    Article  CAS  PubMed  Google Scholar 

  • Nyamukondiwa C, Terblanche JS, Marshall KE, Sinclair BJ (2011) Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J Evol Biol 24:1927–1938

    Article  CAS  PubMed  Google Scholar 

  • Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli O (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5(4):745–757

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelton E, Gratton C, Isaacs R, Van Timmeren S, Blanton A, Guédot C (2016) Earlier activity of Drosophila suzukii in high woodland landscapes but relative abundance is unaffected. J Pest Sci. doi:10.1007/s10340-016-0733-z

    Google Scholar 

  • Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitnick S, Markow T, Spicer GS (1999) Evolution of multiple kinds of female sperm-storage organs in Drosophila. Evolution 53(6):1804–1822

    Article  Google Scholar 

  • Revadi S, Lebreton S, Witzgall P, Anfora G, Dekker T, Becher P (2015) Sexual behavior of Drosophila suzukii. Insects 6(1):183–196

    Article  PubMed  PubMed Central  Google Scholar 

  • Rota-Stabelli O, Blaxter M, Anfora G (2013) Quick guide: Drosophila suzukii. Curr Biol 23:R1–R3

    Article  Google Scholar 

  • Salminen TS, Hoikkala A (2013) Effect of temperature on the duration of sensitive period and on the number of photoperiodic cycles required for the induction of reproductive diapause in Drosophila montana. J Insect Physiol 59(4):450–457

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M, Sato R (1995) Bionomics of the cherry drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Futeushima Prefecture (Japan). Annu Rep Soc Plant Prot North Jpn 46:164–172

    Google Scholar 

  • Scott JG, Wen Z (2001) Cytochromes P450 of insects: the tip of the iceberg. Pest Manag Sci 57:958–967

    Article  CAS  PubMed  Google Scholar 

  • Shaw WR, Teodori E, Mitchell SN, Baldini F, Gabrieli P, Rogers DW, Catteruccia F (2014) Mating activates the heme peroxidase HPX15 in the sperm storage organ to ensure fertility in Anopheles gambiae. Proc Natl Acad Sci USA 111(16):5854–5859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences, 2nd edn. McGraw-Hill, Singapore, p 399

    Google Scholar 

  • Stephens AR, Asplen MK, Hutchison WD, Venette RC (2015) Cold hardiness of winter-acclimated Drosophila suzukii (Diptera: Drosophilidae) adults. Environ Entomol. doi:10.1093/ee/nvv134

    PubMed  Google Scholar 

  • Sugumaran M (2002) Comparative biochemistry of eumelanogenesis and the protective roles of phenoloxidase and melanin in insects. Pigment Cell Res 15:2–9

    Article  CAS  PubMed  Google Scholar 

  • Tauber MJ, Tauber CA, Masaki S (1986) Seasonal adaptations of insects. Oxford University Press, New York

    Google Scholar 

  • True JR (2003) Insect melanism: the molecules matter. Trends Ecol Evol 18(12):640–647

    Article  Google Scholar 

  • Walsh DB, Bolda MP, Goodhue RE, Dreves AJ, Lee JC (2010) Drosophila suzukii (Diptera: Drosophilidae): invasive pest of ripening soft fruit expanding its geographic range and damage potential. J Integr Pest Manag 2:G1–G7

    Article  Google Scholar 

  • Wilson TG (2001) Resistance of Drosophila to toxins. Annu Rev Entomol 46:545–571

    Article  CAS  PubMed  Google Scholar 

  • Wiman NG, Walton VM, Dalton DT, Anfora G, Burrack HJ, Chiu JC, Daane KM, Grassi A, Miller B, Tochen S, Wang X, Ioriatti C (2014) Integrating temperature-dependent life table data into a matrix projection model for Drosophila suzukii population estimation. PLoS One 9(9):e106909

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu SR, Tai HK, Li ZY, Wang X, Yang SS, Sun W, Xiao C (2007) Field evaluation of different trapping methods of cherry fruit fly, Drosophila suzukii. J Yunnan Agric Univ 22(5):776–778

    Google Scholar 

  • Zabalou S, Riegler M, Theodorakopoulou M, Stauffer C, Savakis C, Bourtzis K (2004) Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control. Proc Natl Acad Sci USA 101:15042–15045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zachariassen KE (1985) Physiological reviews: physiology of cold tolerance in insects. Physiol Rev 65:799–832

    CAS  PubMed  Google Scholar 

  • Zerulla FN, Schmidt S, Streitberger M, Zebitz CPW, Zelger R (2015) On the overwintering ability of Drosophila suzukii in South Tyrol. J Berry Res 5:41–48

    Google Scholar 

Download references

Acknowledgments

This research was partially funded by the Autonomous Province of Trento (Italy) through Grandi Progetti, Project LExEM (Laboratory of Excellence for Epidemiology and Modeling, http://www.lexem.eu). We are thankful to Karen Wells (Agricultural Research Service USDA, Parlier, California) for reviewing the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Valerio Rossi-Stacconi.

Additional information

Communicated by A. Biondi.

Special Issue: Spotted Wing Drosophila

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi-Stacconi, M.V., Kaur, R., Mazzoni, V. et al. Multiple lines of evidence for reproductive winter diapause in the invasive pest Drosophila suzukii: useful clues for control strategies. J Pest Sci 89, 689–700 (2016). https://doi.org/10.1007/s10340-016-0753-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-016-0753-8

Keywords

Navigation