Skip to main content
Log in

Fruit availability influences the seasonal abundance of invasive stink bugs in ornamental tree nurseries

  • Rapid Communication
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Invasive plant-feeding insects cause billions of dollars in economics losses annually around the world. Understanding how they utilize different host plants directly informs their management. The highly invasive brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), has destroyed crops and invaded homes since its discovery in the U.S. in the mid-1990s. In this study, we test the hypothesis that in diverse resource environments, the presence and maturity of fruits on trees influences the abundance of H. halys. Observational surveys of the abundance of H. halys life stages (egg masses, nymphs, and adults) on 3884 trees of 223 cultivars in woody plant nurseries revealed that fruit maturity was a strong predictor of the seasonal abundance and within-tree distribution of H. halys. We next explicitly tested whether fruits themselves were the key resource for H. halys through a manipulative field experiment. Removal of fruits from trees suppressed stink bug abundance throughout the season. Despite being considered a broad feeding generalist, our results highlight that in landscapes with highly heterogeneous and ephemeral resources, H. halys specializes on finding mature fruits. Therefore, H. halys can be controlled by designing landscapes with fruitless varieties of popular trees, exploiting phenological mismatches between the pest and its host plants, and through targeted management of H. halys on fruiting trees in the landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Aukema JE, Leung B, Kovacs K et al (2011) Economic impacts of non-native forest insects in the continental United States. PLoS One 6:e24587. doi:10.1371/journal.pone.0024587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–7

  • Behmer ST (2009) Insect herbivore nutrient regulation. Annu Rev Entomol 54:165–187. doi:10.1146/annurev.ento.54.110807.090537

    Article  CAS  PubMed  Google Scholar 

  • Behmer ST, Simpson SJ, Raubenheimer D (2002) Herbivore foraging in chemically heterogeneous environments: nutrients and secondary metabolites. Ecology 83:2489–2501. doi:10.1890/0012-9658(2002)083[2489:HFICHE]2.0.CO;2

  • Bergmann EJ, Bernhard KM, Bernon G, et al (2014) Host plants of the brown marmorated stink bug in the U.S. BMSB IPM working group & Northeastern IPM center

  • Bernays EA, Minkenberg OPJM (1997) Insect herbivores: different reasons for being a generalist. Ecology 78:1157–1169. doi:10.2307/2265866

  • Bolker BM, Brooks ME, Clark CJ et al (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  PubMed  Google Scholar 

  • Carvalheiro LG, Buckley YM, Memmott J (2010) Diet breadth influences how the impact of invasive plants is propagated through food webs. Ecology 91:1063–1074. doi:10.1890/08-2092.1

    Article  PubMed  Google Scholar 

  • Cesari M, Maistrello L, Ganzerli F et al (2014) A pest alien invasion in progress: potential pathways of origin of the brown marmorated stink bug Halyomorpha halys populations in Italy. J Pest Sci 88:1–7. doi:10.1007/s10340-014-0634-y

    Article  Google Scholar 

  • Desurmont GA, Pearse IS (2014) Alien plants versus alien herbivores: does it matter who is non-native in a novel trophic interaction? Curr Opin Insect Sci 2:20–25. doi:10.1016/j.cois.2014.06.006

    Article  Google Scholar 

  • Desurmont GA, Donoghue MJ, Clement WL, Agrawal AA (2011) Evolutionary history predicts plant defense against an invasive pest. Proc Natl Acad Sci 108:7070–7074. doi:10.1073/pnas.1102891108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eubanks MD, Denno RF (1999) The ecological consequences of variation in plants and prey for an omnivorous insect. Ecology 80:1253–1266. doi:10.1890/0012-9658(1999)080[1253:TECOVI]2.0.CO;2

  • Eubanks MD, Styrsky JD, Denno RF (2003) The evolution of omnivory in heteropteran insects. Ecology 84:2549–2556. doi:10.1890/02-0396

    Article  Google Scholar 

  • Fagan WF, Siemann E, Mitter C et al (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802. doi:10.1086/343879

    Article  PubMed  Google Scholar 

  • Forister ML, Wilson JS (2013) The population ecology of novel plant–herbivore interactions. Oikos 122:657–666. doi:10.1111/j.1600-0706.2013.00251.x

    Article  Google Scholar 

  • Fox J (2003) Effect displays in R for generalised linear models. J Stat Softw 8:1–27

    Google Scholar 

  • Fox J, Wiesberg S (2011) An R companion to applied regression, 2nd edn. Sage Publications, Thousand Oaks

    Google Scholar 

  • Freeland WJ, Janzen DH (1974) Strategies in herbivory by mammals: the role of plant secondary compounds. Am Nat 108:269–289

    Article  CAS  Google Scholar 

  • Gandhi KJ, Herms DA (2010) Direct and indirect effects of alien insect herbivores on ecological processes and interactions in forests of eastern North America. Biol Invasions 12:389–405. doi:10.1007/s10530-009-9627-9

    Article  Google Scholar 

  • Gariepy TD, Haye T, Fraser H, Zhang J (2014) Occurrence, genetic diversity, and potential pathways of entry of Halyomorpha halys in newly invaded areas of Canada and Switzerland. J Pest Sci 87:17–28. doi:10.1007/s10340-013-0529-3

    Article  Google Scholar 

  • Guglielmo CG, Karasov WH, Jakubas WJ (1996) Nutritional costs of a plant secondary metabolite explain selective foraging by ruffed grouse. Ecology 77:1103–1115. doi:10.2307/2265579

    Article  Google Scholar 

  • Haye T, Abdallah S, Gariepy T, Wyniger D (2014) Phenology, life table analysis and temperature requirements of the invasive brown marmorated stink bug, Halyomorpha halys, in Europe. J Pest Sci 87:407–418. doi:10.1007/s10340-014-0560-z

    Google Scholar 

  • Hoebeke ER, Carter ME (2003) Halyomorpha halys (Stål) (Heteroptera: Pentatomidae): a polyphagous plant pest from Asia newly detected in North America. Proc Entomol Soc Wash 105:225–237

    Google Scholar 

  • Holtz T, Kamminga KL (2010) Qualitative analysis of the pest risk potential of the brown marmorated stink bug (BMSB), Halyomorpha halys (Stål), in the United States. USDA APHIS PPQ

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi:10.1002/bimj.200810425

    Article  PubMed  Google Scholar 

  • Inkley DB (2012) Characteristics of home invasion by the brown marmorated stink bug (Hemiptera: Pentatomidae). J Entomol Sci 47:125–130

    Google Scholar 

  • Kennedy GG, Storer NP (2000) Life systems of polyphagous arthropod pests in temporally unstable cropping systems. Annu Rev Entomol 45:467–493. doi:10.1146/annurev.ento.45.1.467

    Article  CAS  PubMed  Google Scholar 

  • Leskey TC, Hamilton GC, Nielsen AL et al (2012) Pest status of the brown marmorated stink bug, Halyomorpha halys in the USA. Outlooks Pest Manag 23:218–226. doi:10.1564/23oct07

    Article  Google Scholar 

  • Liebhold AM, MacDonald WL, Bergdahl D, Mastro VC (1995) Invasion by exotic forest pests: a threat to forest ecosystems. For Sci 41:a0001–z0001

    Google Scholar 

  • Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Syst 11:119–161

    Article  Google Scholar 

  • Nielsen AL, Hamilton GC (2009) Life history of the invasive species Halyomorpha halys (Hemiptera: Pentatomidae) in northeastern United States. Ann Entomol Soc Am 102:608–616. doi:10.1603/008.102.0405

    Article  Google Scholar 

  • Panizzi AR (1997) Wild hosts of Pentatomids: ecological significance and role in their pest status on crops. Annu Rev Entomol 42:99–122. doi:10.1146/annurev.ento.42.1.99

    Article  CAS  PubMed  Google Scholar 

  • Parker JD, Burkepile DE, Hay ME (2006) Opposing effects of native and exotic herbivores on plant invasions. Science 311:1459–1461. doi:10.1126/science.1121407

    Article  CAS  PubMed  Google Scholar 

  • Pearse IS, Altermatt F (2013) Predicting novel trophic interactions in a non-native world. Ecol Lett 16:1088–1094. doi:10.1111/ele.12143

    Article  PubMed  Google Scholar 

  • Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288. doi:10.1016/j.ecolecon.2004.10.002

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed effects models in S and S-Plus. Springer, New York

    Book  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna

  • Rice KB, Bergh CJ, Bergmann EJ et al (2014) Biology, ecology, and management of brown marmorated stink bug (Hemiptera: Pentatomidae). J Integr Pest Manag 5:1–13. doi:10.1603/IPM14002

    Article  Google Scholar 

  • Sala OE, Chapin FS et al (2000) Global Biodiversity Scenarios for the Year 2100. Science 287:1770–1774. doi:10.1126/science.287.5459.1770

    Article  CAS  PubMed  Google Scholar 

  • Simpson SJ, Raubenheimer D (1993) A multi-level analysis of feeding behaviour: the geometry of nutritional decisions. Philos Trans R Soc Lond B Biol Sci 342:381–402. doi:10.1098/rstb.1993.0166

    Article  Google Scholar 

  • Venugopal PD, Coffey PL, Dively GP, Lamp WO (2014) Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae) densities and the associated damage at field corn and soybean edges. PLoS One 9:e109917. doi:10.1371/journal.pone.0109917

    Article  PubMed Central  PubMed  Google Scholar 

  • Venugopal PD, Martinson HM, Bergmann EJ et al (2015) Edge effects influence the abundance of the invasive Halyomorpha halys (Hemiptera: Pentatomidae) in woody plant nurseries. Environ Entomol 44:474–479. doi:10.1093/ee/nvv061

    Google Scholar 

  • Vitousek PM (1994) Beyond global warming: ecology and global change. Ecology 75:1861–1876. doi:10.2307/1941591

    Article  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wiman NG, Walton VM, Shearer PW et al (2015) Factors affecting flight capacity of brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). J Pest Sci 88:37–47. doi:10.1007/s10340-014-0582-6

    Google Scholar 

  • Zuur AF, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to Steve Black and Kelly Lewis for field access and to Stokes Aker, Kevin Beiter, Caroline Brodo, Sean Harris, Colleen McMullen, Dylan Reisinger, Christopher Riley, Kris Keochinda, and Ryan Wallace for field assistance. This work was supported by funds from the USDA National Institute of Food and Agriculture McIntire-Stennis Project (Project No. 1003486) and the USDA NIFA Specialty Crop Research Initiative (Award 2011-51181-30937).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holly M. Martinson.

Additional information

Communicated by T. Haye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinson, H.M., Venugopal, P.D., Bergmann, E.J. et al. Fruit availability influences the seasonal abundance of invasive stink bugs in ornamental tree nurseries. J Pest Sci 88, 461–468 (2015). https://doi.org/10.1007/s10340-015-0677-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-015-0677-8

Keywords

Navigation