Skip to main content
Log in

Compatibility of herbicides used in olive orchards with a Metarhizium brunneum strain used for the control of preimaginal stages of tephritids in the soil

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

In vitro and in vivo studies were developed to evaluate the compatibility of the six most common herbicides applied to the soil of olive orchards with the Metarhizium brunneum strain EAMa 01/58-Su for controlling Ceratitis capitata preimaginals. The fungus demonstrated high in vitro compatibility with the six active ingredients in malt agar medium, with growth rates (a) ranging between 2.5 mm d−1 (glyphosate + terbuthylazine) and 3.3 mm d−1 (oxyfluorfen). This compatibility was also revealed in vivo by assaying the fungus (1.0 × 108 conidia g soil−1) toward medfly prepupariating larvae in soil containing herbicides. Even if there was a decrease in the M. brunneum level in the soil up to 104–105 conidia g soil−1 15 days after inoculation, mortality rates, which ranged between 70–80 %, did not differ significantly from the control, except the ones observed in soils that contained glyphosate and its herbicide combinations, in which a significant 50 % reduction of virulence was detected. These results reveal a general compatibility of M. brunneum with the most common herbicides applied to the soil of olive orchards, but a mixture of the fungus in the atomizer tank for simultaneous treatment beneath the tree canopy is recommended for all active ingredients except glyphosate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albajes R, Santiago-Álvarez C (1980) Efectos de la densidad larvaria y de la alimentación en la proporción de sexo de Ceratitis capitata (Diptera: Tephritidae). Anales del INIA Ser Agric 13:175–182

    Google Scholar 

  • Alfaro-Moreno A (2005) Entomología agraria Segunda parte. Orden Diptera. Fam. Trypetidae. Dacus oleae (Gmel). In: Álvarez CS (ed) Los parásitos de las plantas cultivadas. Excma, Diputación provincial de Soria, Soria, pp 219–221

    Google Scholar 

  • Alizadeh A, Samih MA, Khezri M, Riseh RS (2007) Compatibility of Beauveria bassiana (Bals.) Vuill. with several pesticides. Int J Agric Biol 9(1):31–34

    Google Scholar 

  • Barberis CL, Carranza CS, Chiacchiera SM, Magnoli CE (2013) Influence of herbicide glyphosate on growth and aflatoxin B1 production by Aspergillus section Flavi strains isolated from soil on in vitro assay. J Environ Sci Health B 48(12):1070–1079

    Article  CAS  PubMed  Google Scholar 

  • Benz G (1987) Environment. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 177–214

    Google Scholar 

  • Bruck DJ (2010) Fungal entomopathogens in the rhizosphere. Biocontrol 55:103–112

    Article  Google Scholar 

  • Chang CL, Cho IK, Li Q (2012) Laboratory evaluation of the chemosterilant lufenuron against the fruit flies Ceratitis capitata, Bactrocera dorsalis, B. cucurbitae, and B. latifrons. J Asia Pacific Entomol 15:13–16

    Article  Google Scholar 

  • Clear FA, Kos K (2012) Compatibility of selected herbicides with entomopathogenic fungus Beauveria bassiana (Bals.) Vuill. Acta Agric Slov 99(1):57–63

    Google Scholar 

  • Cossentine J, Thistlewood H, Goettel M, Jaronski S (2010) Susceptibility of preimaginal western cherry fruit fly, Rhagoletis indifferens (Diptera: Tephritidae) to Beauveria bassiana (Balsamo) Vuillemin Clavicipitaceae (Hypocreales). J Invertebr Pathol 104:105–109

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira RC, Neves MOJ (2004) Compatibility of Beauveria bassiana with acaricides. Biol Control 33(3):353–358

    Google Scholar 

  • Ekesi S, Dimbi S, Maniania NK (2007) The role of entomopathogenic fungi in the integrated management of fruit flies (Diptera: Tephritidae) with emphasis on species occurring in Africa. In: Ekesi S, Maniana NK (eds) Use of entomopathogenic fungi in biological pest management. Research SignPosts, Trivandrum, pp 239–274

    Google Scholar 

  • Garrido-Jurado I (2008) Potencial de biocontrol de pupas de la mosca del olivo Bactrocera oleae (Gmelin) (Diptera: Tephritidae), mediante tratamientos al suelo con hongos entomopatógenos y su efecto en la artropodofauna edafica del olivar. Department of Agricultural and Forestry Sciences of the University of Cordoba (Spain), p. 25

  • Garrido-Jurado I, Ruano F, Campos M, Quesada-Moraga E (2011a) Effects of soil treatments with entomopathogenic fungi on soil dwelling non-target arthropods at a commercial olive orchard. Biol Control 59:239–244

    Article  Google Scholar 

  • Garrido-Jurado I, Torrent J, Barrón V, Corpas A, Quesada-Moraga E (2011b) Soil properties affect the availability, movement, and virulence of entomopathogenic fungi conidia against puparía of Ceratitis capitata (Diptera: Tephritidae). Biol Control 58:277–285

    Article  Google Scholar 

  • Garrido-Jurado I, Valverde-Gracía P, Quesada-Moraga E (2011c) Use of a multiple logistic regression model to determine the effects of soil moisture and temperature on the virulence of entomopathogenic fungi against pre-imaginal Mediterranean fruit fly Ceratitis capitata. Biol Control 59:366–372

    Article  Google Scholar 

  • Goettel MS, Inglis GD (1996) Fungi: hyphomycetes. In: Lacey L (ed) Manual of techniques in insect pathology. Academic Press, London, pp 213–249

    Google Scholar 

  • González LC, Muiño-García BLM, Nicao MEL, Fernández AR, Albemal MG (2011) Efecto in vitro de siete fungicidas químicos sobre Beauveria Bassiana (Bals.) Vuil Fitosanidad 15(1):31–38

  • Jaronski ST (2010) Ecological factors in the inundative use of fungal entomopathogens. Biocontrol 55:159–185

    Article  Google Scholar 

  • Junta de Andalucía (2013) Relación de sustancias activas autorizadas en producción integrada. Cultivo: Olivar. http://www.juntadeandalucia.es. Accessed 25 Sept 2013

  • Khan S, Bagwan NB, Fatima S, Iqbal MA (2012) In vitro compatibility of two entomopathogenic fungi with selected insecticides, fungicides and plant growth regulators. LARCJI 3(1):36–41

    Google Scholar 

  • Klingen I, Haukeland S (2006) An ecological and societal approach to biological control. In: Eilenberg J, Hokkanen HMT (eds) The soil as a reservoir for natural enemies of pest insects and mites with emphasis on fungi and nematodes. Springer, Netherlands, pp 145–211

    Google Scholar 

  • Kouassi M, Coderre D, Todorova SI (2003) Effects of the timing of applications on the incompatibility of three fungicides and one isolate of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin (Deuteromycotina). J Appl Entomol 127:421–426

    Article  CAS  Google Scholar 

  • Liquido NJ, Shinoda LA, Cunningham RT (1991) Host plants of the Mediterranean fruit fly (Diptera: Tephritida): an annotated world review. Misc Publ Entomol Soc Am 77:1–52

    Google Scholar 

  • Mochi DA, Monteiro AC, Barbosa JC (2005) Action of pesticides to Metarhizium anisopliae in soil. Biol Control 34(6):961–971

    CAS  Google Scholar 

  • Mochi DA, Monteiro AC, De Bortoli SA, Dória HOS, Barbosa JC (2006) Pathogenicity of Metarhizium anisopliae for Ceratitis capitata (Wied.) (Diptera: Tephritidae) in soil with different pesticides. Biol Control 35(3):382–389

    CAS  Google Scholar 

  • Moreno D, Mangan RL (2000) Novel insecticide strategies such as phototoxic dyes in adult fruit fly control and suppression programs. In: Tan K (ed) Area-wide control of fruit flies and other insect pests. Penerbit Universiti Sains, Pulau Pinang, pp 421–432

    Google Scholar 

  • Morjan WE, Pedigo LP, Lewis LC (2002) Fungicidal effects of glyphosate and glyphosate formulations on four species of entomopathogenic fungi. Environ Entomol 31(6):1206–1212

    Article  CAS  Google Scholar 

  • Purcell MF (1998) Contribution of biological control to integrated pest management of tephritid fruit flies in the tropics and subtropics. Integr Pest Manag Rev 3:63–93

    Article  Google Scholar 

  • Queada-Moraga E, Navas-Cortés JA, Maranhao EAA, Ortiz-Urquiza A, Santiago-Álvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and culticvated soils. Mycol Res 111:947–966

    Article  Google Scholar 

  • Quesada-Moraga E, Ruiz-García A, Santiago-Álvarez C (2006) Laboratory evaluation of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against puparia and adults of Ceratitis capitata (Diptera: Tephritidae). J Econ Entomol 99(6):1955–1966

    Article  CAS  PubMed  Google Scholar 

  • Rashid M, Baghdadi A, Sheikhi A, Pourian HR, Gazavi M (2010) Compatibility of Metarhizium Anisopliae (Ascomycota: Hypocreales) with several insecticides. J Plant Prot Res 50(1):22–27

    Article  CAS  Google Scholar 

  • Santiago-Álvarez C, Quesada-Moraga E (2007) The olive fruit fly. Oleae 26:60–61

    Google Scholar 

  • Scheepmaker JWA, Butt TM (2010) Natural and released inoculum levels of entomopathogenic fungal biocontrol agents in soil in relation to risk assessment and in accordance with EU regulations. Biocontrol Sci Technol 20(5):503–552

    Article  Google Scholar 

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    Article  CAS  PubMed  Google Scholar 

  • Sutton S (2012) The limitations of CFU: compliance to CGMP requires good science. JGXP 16(1):74–80

    Google Scholar 

  • Todorova SI, Coderre D, Duchesne RM, Coté JC (1998) Compatibility of Beauveria bassiana with selected fungicides and herbicides. Environ Entomol 27(2):427–433

    Article  CAS  Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley BH, Pell JK, Rangel DEN, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Article  Google Scholar 

  • Yousef M, Lozano-Tovar MD, Garrido-Jurado I, Quesada-Moraga E (2013) Biocontrol of Bactrocera oleae (Diptera: Tephritidae) with Metarhizium brunneum and its extracts. J Econ Entomol 106(3):1118–1125

    Article  CAS  PubMed  Google Scholar 

  • Zain NMM, Mohamad RB, Sijam K, Morshed MM, Awang Y (2013) Effect of selected herbicides in vitro and in soil on growth and development of soil fungi from oil palm plantation. Int J Agric Biol 15(5):820–826

    CAS  Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920

    Article  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Riet KV (1990) Modelling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Pablo Valverde-García for his assistance with the statistical analysis. This research was supported by the project AGR-7681 from the Consejerıa de Innovación, Ciencia y Empresa de la Junta de Andalucía, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Quesada-Moraga.

Additional information

Communicated by M. Traugott.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousef, M., Quesada-Moraga, E. & Garrido-Jurado, I. Compatibility of herbicides used in olive orchards with a Metarhizium brunneum strain used for the control of preimaginal stages of tephritids in the soil. J Pest Sci 88, 605–612 (2015). https://doi.org/10.1007/s10340-014-0632-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-014-0632-0

Keywords

Navigation