Skip to main content
Log in

Semiochemical and natural product-based approaches to control Spodoptera spp. (Lepidoptera: Noctuidae)

  • Review
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The genus Spodoptera contains some of the most destructive crop pests in the world owing to the worldwide distribution of the different species and their wide host ranges. Uses of semiochemicals for insect control have been recently reviewed, but strategies developed specifically against Spodoptera species are scarce. In this review, we present an updated account of the semiochemicals and other natural product-based approaches to monitor and control the most damaging Spodoptera spp. In general, successful control of Spodoptera littoralis, S. frugiperda, S. litura, and S. exigua have been reported through mass trapping, mating disruption, and attract-and-kill methods. An updated survey of the pheromone components of these species and an outlook of future perspectives against these pests are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd El-Aziz SE, Ezz El-Din AA (2007) Insecticidal activity of some wild plant extracts against cotton leafworm, Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). Pak J Biol Sci 10:2192–2197

    PubMed  Google Scholar 

  • Acín P, Carrascal M, Abián J, Guerrero A, Quero C (2009) Expression of differential antennal proteins in males and females of an important crop pest, Sesamia nonagrioides. Insect Biochem Mol Biol 39:11–19

    PubMed  Google Scholar 

  • Acín P, Rosell G, Guerrero A, Quero C (2010) Sex pheromone of the Spanish population of the beet armyworm Spodoptera exigua. J Chem Ecol 36:778–786

    PubMed  Google Scholar 

  • Adams RG, Murray KD, Los LM (1989) Effectiveness and selectivity of sex pheromone lures and traps for monitoring fall armyworm (Lepidoptera: Noctuidae) adults in Connecticut sweet corn. J Econ Entomol 82:285–290

    Google Scholar 

  • Allmann S, Baldwin IT (2010) Insects betray themselves in nature to predators by rapid isomerization of green leaf volatiles. Science 329:1075–1078

    PubMed  CAS  Google Scholar 

  • Amin AA, Gergis MF (2006) Integrated management strategies for control of cotton key pests in middle Egypt. Agron Res 4:121–128

    Google Scholar 

  • Andrade R, Rodriguez C, Oehlschlager A (2000) Optimization of a pheromone lure for Spodoptera frugiperda (Smith) in Central America. J Braz Chem Soc 11:609–613

    CAS  Google Scholar 

  • Arivoli S, Tennyson S (2012) Antifeedant activity of plant extracts against Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) American-Eurasian. J Agric Environ Sci 12:764–768

    Google Scholar 

  • Bagla P (2010) Hardy cotton-munching pests are latest blow to GM crops. Science 327:1439

    PubMed  CAS  Google Scholar 

  • Ballesta-Acosta MC, Pascual-Villalobos MJ, Rodríguez B (2008) The antifeedant activity of natural plant products towards the larvae of Spodoptera littoralis. Span J Agric Res 6:85–91

    Google Scholar 

  • Batista-Pereira LG, Stein K, de Paula AF, Moreira JA, Cruz I, Figueiredo MLC, Perri J Jr, Corrêa AG (2006) Isolation, identification, synthesis, and field evaluation of the sex pheromone of the Brazilian population of Spodoptera frugiperda. J Chem Ecol 32:1085–1099

    PubMed  CAS  Google Scholar 

  • Bau J, Martinez D, Renou M, Guerrero A (1999) Pheromone-triggered orientation flight of male moths can be disrupted by trifluoromethyl ketones. Chem Senses 24:473–480

    PubMed  CAS  Google Scholar 

  • Beevor PS, Hall DR, Lester R, Poppi RG, Read JS, Nesbitt B-F (1975) Sex pheromones of the armyworm moth, Spodoptera exempta (Wlk.). Experientia 31:22–23

    PubMed  CAS  Google Scholar 

  • Ben Jannet H, H-Skhiri F, Mighri Z, Simmonds MSJ, Blaney WM (2001) Antifeedant activity of plant extracts and of new natural diglyceride compounds isolated from Ajuga pseudoiva leaves against Spodoptera littoralis larvae. Ind Crops Prod 14:213–222

    CAS  Google Scholar 

  • Bengtsson M, Karg G, Kirsch PA, Löfqvist J, Sauer A, Witzgall P (1994) Mating disruption of pea moth Cydia nigricana F. (Lepidoptera: Tortricidae) by a repellent blend of sex pheromone and attraction inhibitors. J Chem Ecol 20:871–887

    PubMed  CAS  Google Scholar 

  • Bengtsson M, Jaastad G, Knudsen G, Kobro S, Bäckman A-C, Petterson E, Witzgall P (2006) Plant volatiles mediate attraction to host and non-host plant in apple fruit moth, Argyresthia conjugella. Entomol Exp Appl 118:77–85

    CAS  Google Scholar 

  • Bestmann H, Attygalle AB, Schwarz J, Vostrowsky O, Knauf W (1988) Identification of sex pheromone components of Spodoptera sunia Guenée (Lepidoptera: Noctuidae). J Chem Ecol 14:683–690

    PubMed  CAS  Google Scholar 

  • Blair BW, Tannock J (1978) A further note on the possible pheromone for Spodoptera triturata (Walker) (Lepidoptera, Noctuidae). Rhod J Agric Res 16:221–223

    Google Scholar 

  • Blaney WM, Simmonds MSJ, Ley SV, Jones PS (1988) Insect antifeedants: a behavioural and electrophysiological investigation of natural and synthetically derived clerodane diterpenoids. Entomol Exp Appl 46:267–274

    CAS  Google Scholar 

  • Brewer MJ, Trumble JT (1989) Field monitoring for insecticide resistance in the beet armyworm, Spodoptera exigua (Hübner). J Econ Entomol 82:1520–1526

    CAS  Google Scholar 

  • Brewer MJ, Trumble JT (1991) Classifying resistance severity in field populations: sampling inspection plans for an insecticide resistance monitoring program. J Econ Entomol 84:379–389

    Google Scholar 

  • Broza M, Brownbridge M, Sneh B (1991) Monitoring secondary outbreaks of the African armyworm in Kenya using pheromone traps for timing of Bacillus thuringiensis application. Crop Prot 10:229–233

    Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    PubMed  CAS  Google Scholar 

  • Bruno M, Piozzi F, Maggio AM, Simmonds MSJ (2002a) Antifeedant activity of neoclerodane diterpenoids from two Sicilian species of Scutellaria. Biochem Syst Ecol 30:793–799

    CAS  Google Scholar 

  • Bruno M, Piozzi F, Rosselli S (2002b) Natural and hemisynthetic neoclerodane diterpenoids from Scutellaria and their antifeedant activity. Nat Prod Rep 19:357–378

    PubMed  CAS  Google Scholar 

  • Byers JA (2007) Simulation of mating disruption and mass trapping with competitive attraction and camouflage. Environ Entomol 36:1328–1338

    PubMed  Google Scholar 

  • Campion DG (1983) Pheromones for the control of insect pests in Mediterranean countries. Crop Prot 2:3–16

    CAS  Google Scholar 

  • Campion DG, Nesbitt BF (1981) Recent advances in the use of pheromones in developing countries with particular reference to mass-trapping for the control of the Egyptian cotton leaf worm Spodoptera littoralis and mating disruption for the control of pink bollworm Pectinophora gossypiella. In: Les médiateurs chimiques agissant sur le comportement des insectes. Les Colloques de l’INRA, 7, INRA, Versailles, pp 335–342

  • Campion DG, Hunter-Jones P, McVeigh LJ, Hall DR, Lester R, Nesbitt BF (1980) Modification of the attractiveness of the primary pheromone component of the Egyptian cotton leafworm Spodoptera littoralis (Boisduval) (Lepidoptera, Noctuidae) by secondary pheromone components and related chemicals. Bull Entomol Res 70:417–434

    CAS  Google Scholar 

  • Cardé RT, Minks AK (1995) Control of moth pests by mating disruption: successes and constraints. Annu Rev Entomol 40:559–585

    Google Scholar 

  • Cardé RT, Minks AK (1997) Insect pheromone research: new directions. Chapman & Hall, New York

    Google Scholar 

  • Castro A, Coll J (2008) Neo-Clerodane diterpenoids from Verbenaceae: structural elucidation and biological activity. Nat Prod Commun 3:1021–1031

    CAS  Google Scholar 

  • Cheke RA, Tucker MR (1995) An evaluation of potential economic returns from the strategic control approach to the management of African armyworm Spodoptera exempta (Lepidoptera: Noctuidae) populations in eastern Africa. Crop Prot 14:91–103

    Google Scholar 

  • Chen YG, Ruberson JR, Olson DM (2008) Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton. Entomol Exp Appl 126:244–255

    CAS  Google Scholar 

  • Cheng E, Lu W, Lin W, Lin D, Tsai T (1988) Effective control of beet armyworm, Spodoptera exigua (Hübner), on green onion by the ovicidal action of bifenthrin. J Agric Res China 37:320–327

    CAS  Google Scholar 

  • Coll J, Tandrón YA (2008) Neo-Clerodane diterpenoids from Ajuga: structural elucidation and biological activity. Phytochem Rev 7:25–49

    CAS  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    PubMed  CAS  Google Scholar 

  • Cork A, Murlis J, Megenasa T (1989) Identification and field testing of additional components of female sex pheromone of African armyworm, Spodoptera exempta (Lepidoptera: Noctuidae). J Chem Ecol 15:1349–1364

    PubMed  CAS  Google Scholar 

  • Cork A, de Souza K, Hall DR, Jones OT, Casagrande E, Krishnaiah K, Syed Z (2008) Development of PVC-resin-controlled release formulation for pheromones and use in mating disruption of yellow rice stem borer, Scirpophaga incertulas. Crop Prot 27:248–255

    CAS  Google Scholar 

  • Cruz I, Figueiredo M, Oliveira AC, Vasconcelos CA (1999) Damage of Spodoptera frugiperda (Smith) in different maize genotypes cultivated in soil under three levels of aluminium saturation. Int J Pest Manage 45:293–296

    Google Scholar 

  • Cruz I, Figueiredo MLC, Braga da Silva R, Fernandes da Silva I, de Souza PC, Foster JE (2012) Using sex pheromone traps in the decision-making process for pesticide application against fall armyworm (Spodoptera frugiperda [Smith] [Lepidoptera: Noctuidae]) larvae in maize. Int J Pest Manage 58:83–90

    CAS  Google Scholar 

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    PubMed  CAS  Google Scholar 

  • de Groot P, McDonald LM (1999) Green leaf volatiles inhibit response of red pine cone beetle Conophthorus resinosae (Coleoptera: Scolytidae) to a sex pheromone. Naturwissenschaften 86:81–85

    Google Scholar 

  • De Luigi V, Furlan L, Palmieri S, Vettorazzo M, Zanini G, Edwards CR, Burgio G (2011) Results of WCR monitoring plans and evaluation of an eradication programme using GIS and Indicator Kriging. J Appl Entomol 135:38–46

    Google Scholar 

  • de Souza KR, McVeigh LJ, Wright DJ (1992) Selection of insecticides for lure and kill studies against Spodoptera littoralis (Lepidoptera, Noctuidae). J Econ Entomol 85:2100–2106

    Google Scholar 

  • De Souza K, McVeigh LJ, Downham MCA, Smith J, Moawad GM (1993) Mating disruption of Spodoptera littoralis in Egypt. IOBC/WPRS Bulletin 16:212

    Google Scholar 

  • Degenhardt J (2009) Indirect defense responses to herbivory in grasses. Plant Physiol 149:96–102

    PubMed Central  PubMed  CAS  Google Scholar 

  • Deng JY, Wei HY, Huang YP, Du JW (2004) Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plant. J Chem Ecol 30:2037–2045

    PubMed  CAS  Google Scholar 

  • Di Toto Blessing L, Álvarez Colom O, Popich S, Neske A, Bardón A (2010) Antifeedant and toxic effects of acetogenins from Annona montana on Spodoptera frugiperda. J Pest Sci 83:307–310

    Google Scholar 

  • Dickens JC (1994) Sensitivity and responsiveness of neurons associated with male-specific trichoid sensilla in the beet armyworm, Spodoptera exigua, to volatile emissions of sympatric Spodoptera spp. and plant odors. In: Kurihara K, Suzuki N, Ogawa H (eds) Olfaction and taste. Springer, Tokyo, pp 847–848

    Google Scholar 

  • Dong S, Du J (2002) Chemical identification and field tests of sex pheromone of beet armyworm Spodoptera exigua. Acta Phytophysiol Sinica 29:19–24

    Google Scholar 

  • Downham MCA, McVeigh LJ, Moawad GM (1995) Field investigation of an attracticide control technique using the sex pheromone of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera: Noctuidae). Bull Entomol Res 85:463–472

    CAS  Google Scholar 

  • Dunkelblum E, Kehat M, Gothilf S, Greenberg S, Sklarsz B (1982) Optimized mixture of sex pheromonal components for trapping of male Spodoptera littoralis in Israel. Phytoparasitica 10:21–26

    CAS  Google Scholar 

  • Duran I, Parrilla A, Feixas J, Guerrero A (1993) Inhibition of antennal esterases of the Egyptian armyworm Spodoptera littoralis by trifluoromethyl ketones. Bioorg Med Chem Lett 3:2593–2598

    CAS  Google Scholar 

  • Ellis SE (2004) New pest response guidelines: Spodoptera, USDA/APHIS/PPQ/PDMP. http://www.aphis.usda.gov/ppq/manuals/

  • El-Sayed AM (2012) The Pherobase: Database of pheromones and semiochemicals. http://www.pherobase.com

  • El-Sayed AM, Suckling DM, Wearing CH, Byers JA (2006) Potential of mass trapping for long-term pest management and eradication of invasive species. J Econ Entomol 99:1550–1564

    PubMed  CAS  Google Scholar 

  • El-Sayed AM, Suckling DM, Byers JA, Jang EB, Wearing CH (2009) Potential of “lure and kill” in long-term pest management and eradication of invasive species. J Econ Entomol 102:815–835

    PubMed  CAS  Google Scholar 

  • Firake DM, Pande R (2009) Impact of camphor and mentha oil on biology of the tobacco caterpillar Spodoptera litura (Fabricius). Curr Biotica 3:88–92

    Google Scholar 

  • Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW (2011) Field-evolved resistance to Bt maize by western corn rootworm. PLoS ONE 6:e22629

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gillette NE, Erbilgin N, Webster NJ, Pederson L, Mori SR, Stein JD, Owen DR, Bischel KM, Wood DL (2009a) Aerially applied verbenone-releasing laminated flakes protect Pinus contorta stands from attack by Dendroctonus ponderosae in California and Idaho. For Ecol Manage 257:1405–1412

    Google Scholar 

  • Gillette NE, Mehmel CJ, Webster NJ, Mori SR, Erbilgin N, Wood DL, Stein JD (2009b) Aerially applied methylcyclohexenone-releasing flakes protect Pseudotsuga menziesii stands from attack by Dendroctonus pseudotsugae. For Ecol Manage 257:1231–1236

    Google Scholar 

  • Giner M, Sans A, Riba M, Bosch D, Gago R, Rayo J, Rosell G, Guerrero A (2009) Development and biological activity of a new antagonist of the pheromone of the codling moth Cydia pomonella. J Agric Food Chem 57:8514–8519

    PubMed  CAS  Google Scholar 

  • Guerrero A, Rosell G (2005) Biorational approaches for insect control by enzymatic inhibition. Curr Med Chem 12:461–469

    PubMed  CAS  Google Scholar 

  • Haggis MJ (1986) Distribution of the African armyworm, Spodoptera exempta (Walker) (Lepidoptera: Noctuidae), and the frequency of larval outbreaks in Africa and Arabia. Bull Entomol Res 76:151–170

    Google Scholar 

  • Hruska AJ, Gould F (1997) Fall armyworm (Lepidoptera: Noctuidae) and Diatraea lineolata (Lepidoptera: Pyralidae): impact of larval population level and temporal occurrence on maize yield in Nicaragua. J Econ Entomol 90:611–622

    Google Scholar 

  • Isman MB (2005) Tropical forests as sources of natural insecticides. In: Arnason JT, Abou-Zaid M, Romeo JT (eds) Recent advances in phytochemistry, chemical ecology and phytochemistry of forests and forest ecosystems. Plenum Press, New York, pp 145–161

    Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    PubMed  CAS  Google Scholar 

  • Isman MB, Wan AJ, Passreiter CM (2001) Insecticidal activity of essential oils to the tobacco cutworm, Spodoptera litura. Fitoterapia 72:65–68

    PubMed  CAS  Google Scholar 

  • Jacobson M, Redfern RE, Jones WA, Aldridge MH (1970) Sex pheromones of the southern armyworm moth: isolation, identification, and synthesis. Science 170:542–544

    PubMed  CAS  Google Scholar 

  • Journel AG, Huijbregts CJ (2003) Mining geostatistics. The Blackburn Press, Caldwell

    Google Scholar 

  • Kehat M, Dunkelblum E (1993) Sex-pheromones—achievements in monitoring and mating disruption of cotton pests in Israel. Arch Insect Biochem Physiol 22:425–431

    CAS  Google Scholar 

  • Kehat M, Greenberg S (1978) Efficiency of synthetic sex attractant and effect of trap size on captures of Spodoptera littoralis males in water traps and in dry funnel traps. Phytoparasitica 6:79–83

    Google Scholar 

  • Kehat M, Gothilf S, Dunkelblum E, Bar-Shavit N, Gordon D (1985) Night observations on the cotton leafworm, Spodoptera littoralis: reliability of pheromone traps for population assessment and efficacy of widely separated pheromone dispensers for mating disruption. Phytoparasitica 13:215–220

    Google Scholar 

  • Kehat M, Dunkelblum E, Gothilf S, Bar-Shavit N, Gordon D, Harel M (1986) Mating disruption of the Egyptian cotton leafworm, Spodoptera littoralis (Lepidoptera, Noctuidae), in cotton with a polymeric aerosol formulation containing (Z, E)-9,11-tetradecadienyl acetate. J Econ Entomol 79:1641–1644

    CAS  Google Scholar 

  • Kehat M, Dunkelblum E, Gothilf S (1987) Mating disruption of the Egyptian cotton leafworm, Spodoptera littoralis, in cotton. Phytoparasitica 15:155–164

    Google Scholar 

  • Kerns DL (2000) Mating disruption of beet armyworm (Lepidoptera: Noctuidae) in vegetables by a synthetic pheromone. Crop Prot 19:327–334

    CAS  Google Scholar 

  • Kim KC, Park JD, Choi DS (1995) Seasonal occurrence of Spodoptera exigua in Chonnan province and possibility of their control in vinyl house with pheromone traps. Korean J Appl Entomol 34:106–111 (in Korean)

    Google Scholar 

  • Kitamura C, Kobayashi M (1985) A comparison between communication disruption and mass trapping methods in mating suppression effect of a synthetic sex pheromone to Spodoptera litura F (Lepidoptera, Noctuidae). Appl Entomol Zool 20:222–224

    Google Scholar 

  • Klein Gebbinck EA, Jansen BJM, de Groot A (2002) Insect antifeedant activity of clerodane dieterpenes and related model compounds. Phytochemistry 61:737–770

    PubMed  CAS  Google Scholar 

  • Knight AL, Hilton R, Light DM (2005) Monitoring codling moth (Lepidoptera: Tortricidae) in apple with blends of ethyl (E, Z)-2,4-decadienoate and codlemone. Environ Entomol 34:598–603

    CAS  Google Scholar 

  • Koul O (2008) Phytochemicals and insect control: an antifeedant approach. Crit Rev Plant Sci 27:1–24

    CAS  Google Scholar 

  • Krishnaiah K (1986) Studies on the use of pheromones for the control of Spodoptera litura Fab. on black gram grown in rice fallows. Indian J Plant Prot 14:43–46

    CAS  Google Scholar 

  • Kurihara M, Usui K, Uchiumi K, Tatsuki S (1991) Sex pheromone of the lawn grass cutworm moth, Spodoptera depravata (Butler) (Lepidoptera: Noctuidae). J Appl Entomol Zool 35:323–324

    CAS  Google Scholar 

  • Lalanne-Cassou B, Silvain JF, Monti L, Malosse C (1994) Description of a new species of Spodoptera from French Guiana: S. descoinsi (Lepidoptera: Noctuidae: Amphipyrinae), discovered with the help of sex attractants. Ann Soc Entomol Fr 30:25–32

  • Landolt PJ, Phillips TW (1997) Host plant influences on the sex pheromone behavior of phytophagous insects. Annu Rev Entomol 42:371–391

    PubMed  CAS  Google Scholar 

  • Landolt PJ, Smithhisler C, Adams T, Zack RS (2003) An improved multi-componet sex attractant for trapping male western yellowstriped armyworm, Spodoptera praefica (Grote) (Lepidoptera: Noctuidae). Agric Forest Entomol 5:333–339

    Google Scholar 

  • Lanzoni A, Bazzocchi GG, Reggiori F, Rama F, Sannino L, Maini S, Burgio G (2012) Spodoptera littoralis male capture suppression in processing spinach using two kinds of synthetic sex-pheromone dispensers. Bull Insectology 65:311–318

    Google Scholar 

  • León I (2009) Detección de Sphenophorus venatus vestitus Chittenden y manejo de Spodoptera frugiperda (J. E. Smith) sobre césped en Quintana Roo, México, Ph.D. Thesis, Colegio de Postgraduados Montecillos, Texcoco, Estado de México, 89 pp

  • Liburd OE, Funderburk JE, Olson SM (2000) Effect of biological and chemical insecticides on Spodoptera species (Lep., Noctuidae) and marketable yields of tomatoes. J Agric Entomol 124:19–25

    CAS  Google Scholar 

  • Lu Y, Wu K, Jiang Y, Guo Y, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    PubMed  CAS  Google Scholar 

  • Malo EA, Cruz-Lopez L, Valle-Mora J, Virgen A, Sanchez JA, Rojas JC (2001) Evaluation of commercial pheromone lures and traps for monitoring male fall armyworm (Lepidoptera: Noctuidae) in the coastal region of Chiapas, Mexico. Fla Entomol 84:659–664

    CAS  Google Scholar 

  • Malo EA, Medina-Hernández N, Virgen A, Cruz-López L, Rojas JC (2002) Electroantennogram and field responses of Spodoptera frugiperda males (Lepidoptera: Noctuidae) to plant volatiles and sex pheromone. Folia Entomol Mex 41:329–338

    Google Scholar 

  • Malo E, Bahena F, Miranda MA, Valle-Mora J (2004) Factors affecting the trapping of males of Spodoptera frugiperda (Lepidoptera: Noctuidae) with pheromones in Mexico. Fla Entomol 87:288–293

    Google Scholar 

  • Malo EA, Rojas JC, Gago R, Guerrero A (2013) Inhibition of the responses to sex pheromone of the fall armyworm, Spodoptera frugiperda. J Insect Sci 13(134):1–14. http://www.insectscience.org/13.134

  • McVeigh LJ, Campion DG, Critchley BR (1990) The use of pheromones for the control of cotton bollworms and Spodoptera spp. in Africa and Asia. In: Ridgway RL, Silverstein RM, Inscoe MN (eds) Behavior-modifying chemicals for insect management. Marcel Dekker Inc., New York, pp 405–415

    Google Scholar 

  • Meagher RLJ (2001) Collection of soybean looper and other noctuids in phenylacetadehyde-baited field traps. Fla Entomol 84:154–155

    Google Scholar 

  • Meagher RLJ (2002) Trapping noctuid moths with synthetic floral volatile lures. Entomol Exp Appl 103:219–226

    CAS  Google Scholar 

  • Meagher RL, Brambila J, Hung E (2008) Monitoring for exotic Spodoptera species (Lepidoptera: Noctuidae) in Florida. Fla Entomol 91:517–522

    Google Scholar 

  • Mitchell ER, McLaughlin JR (1982) Suppression of mating and oviposition by fall armyworm and mating by corn earworm in corn, using the air permeation technique. J Econ Entomol 75:270–274

    Google Scholar 

  • Mitchell ER, Tumlinson JH (1994) Response of Spodoptera exigua and S. eridania (Lepidoptera: Noctuidae) males to synthetic pheromone and S. exigua females. Fla Entomol 77:237–247

    CAS  Google Scholar 

  • Mitchell ER, Copeland WW, Sparks AN, Sekul AA (1974) Fall armyworm: disruption of pheromone communication with synthetic acetates. Environ Entomol 3:778–780

    CAS  Google Scholar 

  • Mitchell ER, Sugie H, Tumlinson JH (1983) Spodoptera exigua: capture of feral males in traps baited with blends of pheromone components. J Chem Ecol 9:95–104

    PubMed  CAS  Google Scholar 

  • Mitchell ER, Tumlinson JH, McNeil JN (1985) Field evaluation of commercial pheromone formulations and traps using a more effective sex pheromone blend for the fall armyworm (Lepidoptera: Noctuidae). J Econ Entomol 78:1364–1369

    Google Scholar 

  • Mitchell ER, Kehat M, Tingle EC, Laughlin JRM (1997) Suppression of mating by beet armyworm (Noctuidae: Lepidoptera) in cotton with pheromone. J Agric Entomol 14:17–28

    CAS  Google Scholar 

  • Mochizuki F, Shibuya T, Ihara T, Wakamura S (1993) Electrophysiological responses of the male antenna to compounds found in the female sex pheromone gland of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl Entomol Zool 28:489–496

    CAS  Google Scholar 

  • Monti L, Lalanne-Cassou B, Lucas P, Malosse C, Silvain JF (1995) Differences in sex pheromone communication systems of closely-related species—Spodoptera latifascia (Walker) and S. descoinsi Lalanne-Cassou and Silvain (Lepidoptera, Noctuidae). J Chem Ecol 21:641–660

    PubMed  CAS  Google Scholar 

  • Monti L, Génermont J, Malosse C, Lalanne-Cassou B (1997) A genetic analysis of some components of reproductive isolation between two closely related species, Spodoptera latifascia (Walker) and S. descoinsi (Lalanne-Cassou and Silvain) (Lepidoptera: Noctuidae). J Evol Biol 10:121–134

    Google Scholar 

  • Muñoz L, Rosell G, Quero C, Guerrero A (2008) Biosynthetic pathways of the Egyptian armyworm Spodoptera littoralis. Physiol Entomol 33:275–290

    Google Scholar 

  • Muñoz L, Bosch MP, Batllori L, Rosell G, Bosch D, Guerrero A, Avilla J (2011) Synthesis of allylic trifluoromethyl ketones and activity as inhibitors of the sex pheromone of the leopard moth, Zeuzera pyrina L. (Lepidoptera: Cossidae). Pest Manage Sci 67:956–964

    Google Scholar 

  • Nagoshi RN, Meagher RL (2004) Behavior and distribution of the two fall armyworm host strains in Florida. Fla Entomol 87:440–449

    Google Scholar 

  • Nansen C, Phillips TW (2004) Attractancy and toxicity of an attracticide for Indian meal moth, Plodia interpunctella (Lepidoptera: Pyralidae). J Econ Entomol 97:703–710

    PubMed  CAS  Google Scholar 

  • Nauen R (2006) Insecticide mode of action: return of the ryanodine receptor. Pest Manage Sci 62:690–692

    CAS  Google Scholar 

  • Nesbitt BF, Beevor PS, Hall DR, Lester R, Poppi RG (1973) Sex pheromones of two noctuid moths. Nat New Biol 244:208–209

    PubMed  CAS  Google Scholar 

  • Ostrauskas H (2003) Moths caught in pheromone traps for southern armyworm (Spodoptera eridania Cr.), fall armyworm (S. frugiperda Sm.) and Egyptian cotton leafworm (S. littoralis Bsd.) (Noctuidae, Lepidoptera) during 1999–2001 in Lithuania. Acta Zool Lithuanica 13:411–424

    Google Scholar 

  • Parrilla A, Guerrero A (1994) Trifluoromethyl ketones as inhibitors of the processionary moth sex pheromone. Chem Senses 19:1–10

    PubMed  CAS  Google Scholar 

  • Passoa S (1991) Color identification of economically important Spodoptera larvae in Honduras (Lepidoptera: Noctuidae). Insecta Mundi 5:185–196

    Google Scholar 

  • Patel HK, Patel NG, Patel VC (1971) Quantitative estimation of damage to tobacco caused by the leaf-eating caterpillar, Prodenia litura. Trop Pest Manage 17:202–205

    Google Scholar 

  • Pavela R (2005) Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76:691–696

    PubMed  CAS  Google Scholar 

  • Pavela R, Chermenskaya T, Shchenikova A (2009) Insecticidal properties of some medicinal plants. In: Govil JN, Singh VK (eds) Recent progress in medicinal plants. Chemistry and medicinal value. Studium Press, Houston, pp 273–290

    Google Scholar 

  • Persoons CJ, Van der Kraan C, Nooijen WJ, Ritter FJ, Voerman S, Baker TC (1981) Sex pheromone components of the beet armyworm, Spodoptera exigua: Isolation, identification and preliminary field evaluation. Entomol Exp Appl 30:98–99

    CAS  Google Scholar 

  • Plettner E (2002) Insect pheromone olfaction: new targets for the design of species-selective pest control agents. Curr Med Chem 9:1075–1085

    PubMed  CAS  Google Scholar 

  • Pogue MG (2002) A world revision of the genus Spodoptera Guenée (Lepidoptera: Noctuidae). Mem Am Entomol Soc 43:1–202

    Google Scholar 

  • Prestwich GD (1986) Fluorinated sterols, hormones and pheromones: enzyme-targeted disruptants in insects. Pestic Sci 37:430–440

    Google Scholar 

  • Qian DL, Li D, Zheng YL (2007) Primary study on control of natural population of Spodoptera litura by using sex pheromone. Plant Prot 33:136–138 (in Chinese)

    Google Scholar 

  • Rama F, Reggiori F, Albertini A (2011) Control of Spodoptera littoralis (Bsdv.) by biodegradable, low dosage, slow-release pheromone dispensers. IOBC/WPRS Bull 72:59–66

    Google Scholar 

  • Reddy GVP, Quero C, Guerrero A (2002) Activity of octylthiotrifluoropropan-2-one, a potent esterase inhibitor, on growth, development, and intraspecific communication in Spodoptera littoralis and Sesamia nonagrioides. J Agric Food Chem 50:7062–7068

    PubMed  CAS  Google Scholar 

  • Renou M, Guerrero A (2000) Insect parapheromones in olfaction research and semiochemical-based pest control strategies. Annu Rev Entomol 45:605–630

    PubMed  CAS  Google Scholar 

  • Renou M, Lucas P, Malo E, Quero C, Guerrero A (1997) Effects of trifluoromethyl ketones and related compounds on the EAG and behaviour responses to pheromones in male moths. Chem Senses 22:407–416

    PubMed  CAS  Google Scholar 

  • Riba M, Sans A, Bau P, Grolleau G, Renou M, Guerrero A (2001) Pheromone response inhibitors of the corn stalk borer Sesamia nonagrioides. Biological evaluation and toxicology. J Chem Ecol 27:1879–1897

    PubMed  CAS  Google Scholar 

  • Riba M, Sans A, Solé J, Muñoz L, Bosch MP, Rosell G, Guerrero A (2005) Antagonism of pheromone response of Ostrinia nubilalis males and implications on behavior in the laboratory and in the field. J Agric Food Chem 53:1158–1165

    PubMed  CAS  Google Scholar 

  • Rosa E, Barata C, Damásio J, Bosch MP, Guerrero A (2006) Aquatic ecotoxicity of a pheromonal antagonist in Daphnia magna and Desmodesmus subspicatus. Aquat Toxicol 79:296–303

    PubMed  CAS  Google Scholar 

  • Rosell G, Quero C, Coll J, Guerrero A (2008) Biorational insecticides in pest management. J Pestic Sci 33:103–121

    CAS  Google Scholar 

  • Saito O (2000) Flight activity of three Spodoptera spp., Spodoptera litura, S. exigua and S. depravata, measured by flight actograph. Physiol Entomol 25:112–119

    Google Scholar 

  • Schmidt-Büsser D, Von Arx M, Guerin PM (2009) Host plant volatiles serve to increase the response of male European grape berry moth, Eupoecilia ambiguella, to their sex pheromone. J Comp Physiol A 195:853–864

    Google Scholar 

  • Shad SA, Sayyed AH, Fazal S, Saleem MA, Zaka SM, Ali M (2012) Field evolved resistance to carbamates, organophosphates, pyrethroids, and new chemistry insecticides in Spodoptera litura Fab. (Lepidoptera: Noctuidae). J Pest Sci 85:153–162

    Google Scholar 

  • Shani A (1982) Field studies and pheromone application in Israel. In: 3rd Israel Meeting on Pheromone Research, Israel, pp 18–22

  • Shen Y-L, Gao Y, Du Y-J (2009) The synergism of plant volatile compounds and sex pheromones of the tobacco cutworm moth, Spodoptera litura (Lepidoptera: Noctuidae). Acta Entomol Sinica 52:1290–1297

    CAS  Google Scholar 

  • Shih CJ, Chu YI (1995) Evaluation of sex pheromone for forecasting the population of tobacco cutworm, Spodoptera litura, on Chinese cabbage. Plant Prot Bull (Taichung) 37:381–392

    Google Scholar 

  • Shorey HH, Summers CG, Sisk CB, Gerber RG (1994) Disruption of pheromone communication in Spodoptera exigua (Lepidoptera, Noctuidae) in tomatoes, alfalfa, and cotton. Environ Entomol 23:1529–1533

    CAS  Google Scholar 

  • Singh KN, Sachan GC (1993a) Assessment of the use of sex pheromone traps in the management of Spodoptera litura L. Indian J Entomol 54:7–13

    Google Scholar 

  • Singh KN, Sachan GC (1993b) Spodoptera litura male moth catches in pheromone traps and their relationship with oviposition in groundnut field at Pantnagar, India. Int J Trop Insect Sci 14:11–14

    Google Scholar 

  • Solé J, Sans A, Riba M, Rosa E, Bosch MP, Barrot M, Palència J, Castellà J, Guerrero A (2008) Reduction of damage by the Mediterranean corn borer Sesamia nonagrioides and the European corn borer Ostrinia nubilalis in maize fields by a trifluoromethyl ketone pheromone analogue. Entomol Exp Appl 126:28–39

    Google Scholar 

  • Srinivas K, Rao PA (1999) Management of Spodoptera litura (F.) infesting groundnut by mating disruption technique with synthetic sex pheromone. J Entomol Res 23:115–119

    Google Scholar 

  • Srivastava OS, Malik DS, Thakur RC (1972) Estimation of losses in yield due to the attack of arthropod pests in soybean. Indian J Entomol 33:224–225

    Google Scholar 

  • Suckling DM, Karg G (1998) Pheromones and other semiochemicals. In: Rechcigl JE, Rechcigl NA (eds) Biological and biotechnological control of insect pests. CRC Press, Boca Raton, pp 63–99

    Google Scholar 

  • Summers CG (1989) Effect of selected pests and multiple pest complexes on alfalfa productivity and stand persistence. J Econ Entomol 82:1782–1791

    Google Scholar 

  • Sun F, Hu YY, Du JW (2002) The sex pheromone communication system of Spodoptera litura (Fabricius). Acta Entomol Sin 45:404–407

    CAS  Google Scholar 

  • Tamaki Y, Yushima T (1974) Sex pheromone of the cotton leafworm Spodoptera littoralis. J Insect Physiol 20:1005–1014

    PubMed  CAS  Google Scholar 

  • Tamaki Y, Ohsawa T, Yushima T, Noguchi H (1976) Sex pheromone and related compounds secreted by the virgin females of Spodoptera litura (F.). Jpn J Appl Entomol Zool 20:81–86

    CAS  Google Scholar 

  • Tan QG, Luo XD (2011) Meliaceous limonoids: chemistry and biological activities. Chem Rev 111:7437–7522

    PubMed  CAS  Google Scholar 

  • Tanwar RK, Prakash A, Panda SK, Swain NC, Garg DK, Singh SP, Kumar SS, Bambawale OM (2010) Rice swarming caterpillar (Spodoptera mauritia) and its management strategies. In: Technical Bulletin 24. National Centre for Integrated Pest Management, New Delhi

  • Teal PEA, Mitchell ER, Tumlinson JH, Heath RR, Sugie H (1985) Identification of volatile sex pheromone components released by the southern armyworm, Spodoptera eridania (Cramer). J Chem Ecol 11:717–725

    PubMed  CAS  Google Scholar 

  • Teixeira AL, de Oliveira JS, Vilela EF (1993) (Z)-11-Hexadecenyl acetate, a new sex pheromone component of Spodoptera latifascia Walker (Lepidoptera: Noctuidae). Rev Ceres 40:230–234

    Google Scholar 

  • Teixeira ÉP, Novo JPS, Stein CP, Godoy IJ (2001) First record of Spodoptera albula (Walker) (Lepidoptera: Noctuidae) damaging peanuts (Arachis hypogaea L.), in the State of São Paulo, Brazil. Neotrop Entomol 30:723–724

    Google Scholar 

  • Teixeira LAF, Miller JR, Epstein DL, Gut LJ (2010) Comparison of mating disruption and mass trapping with Pyralidae and Sesiidae moths. Entomol Exp Appl 137:176–183

    Google Scholar 

  • Tumlinson JH, Mitchell ER, Teal PEA, Heath RR, Mengelkoch LJ (1986) Sex pheromone of fall armyworm, Spodoptera frugiperda (J. E. Smith). Identification of components critical to attraction in the field. J Chem Ecol 12:1909–1926

    PubMed  CAS  Google Scholar 

  • Tumlinson JH, Mitchell ER, Yu HS (1990) Analysis and field evaluation of volatile blend emitted by calling virgin females of beet armyworm moth, Spodoptera exigua (Hubner). J Chem Ecol 16:3411–3423

    PubMed  CAS  Google Scholar 

  • Vogt RG, Riddiford LM, Prestwich GD (1985) Kinetic properties of a pheromone degrading enzyme: the sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci USA 82:8827–8831

    PubMed Central  PubMed  CAS  Google Scholar 

  • von Arx M, Schmidt-Büsser D, Guerin PM (2012) Plant volatiles enhance behavioral responses of grapevine moth males, Lobesia botrana to sex pheromone. J Chem Ecol 38:222–225

    CAS  Google Scholar 

  • Wakamura S, Takai M (1997) Communication disruption for control of the beet armyworm, Spodoptera exigua (Hübner), with synthetic sex pheromone. Jpn Agric Res Quart 29:125–130

    Google Scholar 

  • Wakamura S, Yasui H, Shimatani M, Tokashiki T, Okuhira T, Fujiwara-Tsujii N, Ishikawa M, Uesato T, Zukeyama H, Tobaru H (2011) Sex pheromone of the African armyworm Spodoptera exempta (Lepidoptera: Noctuidae): identification of components of the Okinawan population and formulation for population monitoring. Appl Entomol Zool 46:415–420

    CAS  Google Scholar 

  • Wall C (1990) Principles of monitoring. In: Ridgway RL, Silverstein RM, Inscoe MN (eds) Behavior-modifying chemicals for insect management. Marcel Dekker, New York, pp 9–23

    Google Scholar 

  • Wei H-Y, Du J-W (2003) Identification of active components of sex pheromone for Sidemia depravata and field trapping. Yingyong Shengtai Xuebao (J Appl Sci) 14:730–732 (in Chinese)

  • Whalon ME, Mota-Sanchez D, Hollingsworth RM (2008) Global pesticides resistance in arthropods. Cabi International, Wallingford

    Google Scholar 

  • Witzgall P, Kirsch P, Cork A (2010) Sex pheromones and their impact on pest management. J Chem Ecol 36:80–100

    PubMed  CAS  Google Scholar 

  • Yang S, Yang S, Sun W, Jianping LV, Kuang R (2009) Use of sex pheromone for control of Spodoptera litura (Lepidoptera: Noctuidae). J Entomol Res Soc 11:27–36

    Google Scholar 

  • Yang M, He Y, Zhang K, Peng G, Wang J, Xu Y (2011) Control of tobacco cutworm moth Spodoptera litura (Lepidoptera, Noctuidae) by mass trapping with the synthetic pheromone lures. J Anhui Agric Sci 28 (in Chinese)

  • Zhang Q-H, Schlyter F, Anderson P (1999) Green leaf volatiles interrupt pheromone response of spruce bark beetle, Ips typographus. J Chem Ecol 25:2847–2861

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Antonio Santiesteban and Armando Virgen for technical assistance. We also thank CONACYT (project 84072), Generalitat de Catalunya (2009SGR 871), and the Spanish Ministry of Education (Grant AGL2012-39869-C02-01) with assistance from the European Regional Development Fund for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Guerrero or Edi A. Malo.

Additional information

Communicated by N. Desneux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, A., Malo, E.A., Coll, J. et al. Semiochemical and natural product-based approaches to control Spodoptera spp. (Lepidoptera: Noctuidae). J Pest Sci 87, 231–247 (2014). https://doi.org/10.1007/s10340-013-0533-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-013-0533-7

Keywords

Navigation