Skip to main content
Log in

Parasitism of different Trichogramma species and strains on Plutella xylostella L. on greenhouse cauliflower

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is the most important pest of cultivated Brassica worldwide, including those grown in greenhouses like cauliflower. In this article, we evaluate the potential of various species (and various strains of some species) of Trichogrammatidae (Hymenoptera: Chalcidoidea) to control this pest on cauliflower in greenhouse in France. We assessed the parasitism levels on P. xylostella of 17 Trichogrammatidae strains, belonging to 12 different species (2 indigenous strains from France), under greenhouse conditions. Parasitism levels for each of the Trichogrammatidae species and strains were determined on cauliflower leaves (Brassica oleracea botrytis L., Brassicaceae) infested with P. xylostella eggs. Nine strains parasitized 60% (or more) of the P. xylostella eggs. Compared to previous results in laboratory conditions, climatic conditions of the greenhouse did not influence parasitism levels. The presence of the cauliflower plants may have a positive effect on eight strains, a negative effect on four strains and no effect on five strains. Our study points out the importance of including the host plant of P. xylostella when conducting studies aiming to select the most efficient parasitoid against this pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ables JRD, McCommas WJ, Jones SL, Morrison RK (1980) Effect of cotton plant size, host egg location, and location of parasite release on parasitism by Trichogramma pretiosum. Southwest Entomol 5:261–264

    Google Scholar 

  • Agamy E (2010) Field evaluation of the egg parasitoid, Trichogramma evanescens West. Against the olive moth Prays oleae (Bern.) in Egypt. J Pest Sci 83:53–58

    Article  Google Scholar 

  • Altieri MA, Lewis WJ, Nordlund DA, Gueldner RC, Todd JW (1981) Chemical interactions between plants and Trichogramma wasps in Georgia soybean fields. Prot Ecol 3:259–263

    Google Scholar 

  • Andow DA, Prokrym DR (1990) Plant structural complexity and host-finding by a parasitoid. Oecologia 82:162–165

    Article  Google Scholar 

  • Ayvaz A, Karabörklü S (2008) Effect of cold storage and different diets on Ephestia kuehniella Zeller (Lep: Pyralidae). J Pest Sci 81:57–62

    Article  Google Scholar 

  • Bar D, Gerling D, Rossler Y (1979) Bionomics of the principal natural enemies attacking Heliothis armigera in cotton fields in Israel. Environ Entomol 8:468–474

    Google Scholar 

  • Bigler F, Suverkropp B, Cerutti F (1997) Host searching by Trichogramma and its implications for quality control and release techniques. In: Andow DA, Ragsdale DW, Nyvall RF (eds) Ecological interactions and biological control. Westview Press, New York, pp 241–253

    Google Scholar 

  • Cabello G, Vargas T, Piqueras P (1985) Olfactometer studies of the influence of the plant and of the insect host in the searching activity of Trichogramma cordubensis Vargas & Cabello and T. sp. near buesi (Hym.: Trichogrammatidae). Bol Serv Def Plag Insp Fitopat 11:237–241

    Google Scholar 

  • Carrillo D, Pena JE, Capinera JL (2008) Effect of host plants on successful parasitism by Haeckeliania sperata (Hymenoptera: Trichogrammatidae) on Diaprepes abbreviatus (Coleoptera: Curculionidae) eggs. Environ Entomol 37:1565–1572

    Article  PubMed  Google Scholar 

  • Desneux N, O’Neil RJ (2008) Potential of an alternative prey to disrupt predation of the generalist predator, Orius insidiosus, on the pest aphid, Aphis glycines, via short-term indirect interactions. Bull Entomol Res 98:631–639

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Ramirez-Romero R (2009) Plant characteristics mediated by growing conditions can impact parasitoid’s ability to attack host aphids in winter canola. J Pest Sci 82:335–342

    Article  Google Scholar 

  • Desneux N, O’Neil RJ, Yoo HJS (2006) Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator, and the effects of prey dispersion, predator density and temperature. Environ Entomol 35:1342–1349

    Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Eigenbrode SD, Espelie KE (1995) Effects of plant epicuticular lipids on insect herbivores. Annu Rev Entomol 40:171–194

    Article  Google Scholar 

  • Eizaguirre M, Albajes R, Sans A (1998) Application of Trichogramma brassicae against Ostrinia nubilalis in Catalonia. Bull IOBC/SROP 21:181–191

    Google Scholar 

  • El-Wakeil NE, Farghaly HT, Ragab ZA (2008) Efficacy of inundative releases of Trichogramma evanescens in controlling Lobesia botrana in vineyards in Egypt. J Pest Sci 81:49–55

    Article  Google Scholar 

  • Ganesh KS, Khan MA, Tiwari S (2002) Effect of cruciferous plant extracts on parasitic behaviour of ooparasitoids, Trichogramma spp. (Hym.: Trichogrammatidae). Cruciferae Newslett 24:83–86

    Google Scholar 

  • Gassmann AJ, Carriere Y, Tabashnik BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 54:147–163

    Article  CAS  PubMed  Google Scholar 

  • Gingras D, Dutilleul P, Boivin G (2002) Modeling the impact of plant structure on host-finding behavior of parasitoids. Oecologia 130:396–402

    Article  Google Scholar 

  • Gingras D, Dutilleul P, Boivin G (2003) Effect of plant structure on host finding capacity of lepidopterous pests of crucifers by two Trichogramma parasitoids. Biol Control 27:25–31

    Article  Google Scholar 

  • Hassan SA (1990) A simple method to select effective Trichogramma strains for use in biological control. In: Wajnberg E, Vinson SB (eds) Trichogramma and other egg parasitoids. INRA Editions, Paris, pp 201–205

    Google Scholar 

  • Hazarika LK, Bhuyan M, Hazarlka BN (2009) Insect pests of tea and their management. Annu Rev Entomol 54:267–284

    Article  CAS  PubMed  Google Scholar 

  • Klug T, Meyhöfer R (2009) Performance of two Trichogramma brassicae strains under greenhouse and field conditions for biocontrol of the silver Y moth in spinach cultures. J Pest Sci 82:73–79

    Article  Google Scholar 

  • Lukianchuk JL, Smith SM (1997) Influence of plant structural complexity on the foraging success of Trichogramma minutum: a comparison of search on artificial and foliage models. Entomol Exp Appl 84:221–228

    Google Scholar 

  • Mills NJ, Carl KP (1991) Parasitoids and predators. In: Van der Geest LPS, Evenhuis HH (eds) Tortricid pests: their biology, natural enemies and control, Chap 3.1. Elsevier, Amsterdam, pp 235–252

  • Nordlund DA, Chalfant RB, Lewis WJ (1985) Response of Trichogramma pretiosum females to volatile synomones from tomato plants. J Entomol Sci 20:372–376

    Google Scholar 

  • Pizzol J, Pintureau B (2008) Effect of photoperiod experienced by parents on diapause induction in Trichogramma cacoeciae. Entomol Exp Appl 127:72–77

    Article  Google Scholar 

  • Prasad RP, Roitberg BD, Henderson D (1999) The effect of rearing temperature on flight initiation of Trichogramma sibiricum Sorokina at ambient temperatures. Biol Control 16:291–298

    Article  Google Scholar 

  • Reddy GVP, Holopainen JK, Guerrero A (2002) Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval frass, and green leaf cabbage volatiles. J Chem Ecol 28:131–143

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, Shanower TG, Zebitz CPW (1997) Volatile plant infochemicals mediate plant preference of Trichogramma chilonis. J Chem Ecol 23:2455–2465

    Article  CAS  Google Scholar 

  • Romeis J, Shanower TG, Zebitz CPW (1998) Physical and chemical plant characters inhibiting the searching behaviour of Trichogramma chilonis. Entomol Exp Appl 87:275–284

    Article  Google Scholar 

  • Romeis J, Babendreier D, Wackers FL, Shanower TG (2005) Habitat and plant specificity of Trichogramma egg parasitoids—underlying mechanisms and implications. Basic Appl Ecol 6:215–236

    Article  Google Scholar 

  • Rutledge CE, Robinson AP, Eigenbrode SD (2003) Effects of a simple plant morphological mutation on the arthropod community and the impacts of predators on a principal insect herbivore. Oecologia 135:39–50

    PubMed  Google Scholar 

  • Smith SM (1996) Biological control with Trichogramma: advances, successes, and potential of their use. Annu Rev Entomol 41:375–406

    Article  CAS  PubMed  Google Scholar 

  • Suckling DM, Brockerhoff EG (2010) Invasion biology, ecology, and management of the light brown apple moth (Tortricidae). Annu Rev Entomol 55:285–306

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Article  Google Scholar 

  • Tabone E, Pintureau B, Pizzol J, Michel F, Barnay O (1999) Ability of 17 strains of Trichogramma to control Plutella xylostella (Lep.: Yponomeutidae), in the laboratory. Ann Soc Entomol Fr 35:427–433

    Google Scholar 

  • Tabone E, Lezcano N, Merceur V, Lapchin L (2001) La teigne des crucifères, mise en place d’une lutte biologique à l’aide de trichogrammes. PHM Revue Horticole 424:5–9

    Google Scholar 

  • Tabone E, Bardon C, Pintureau B, Alauzet C (2006) Importance of host oviposition pattern and plant size for the selection of Trichogramma strains to control the diamondback moth. Entomol Exp Appl 119:47–51

    Article  Google Scholar 

  • Talekar NS, Shelton AM (1993) Biology, ecology and management of diamondback moth. Annu Rev Entomol 38:275–301

    Article  Google Scholar 

  • Theiling MK, Croft BA (1988) Pesticide side effects on Arthropod natural enemies: a database summary. Agr Ecosyst Environ 21:191–218

    Article  CAS  Google Scholar 

  • Thomas MB, Waage JK (1996) Integration of biological control and host plant resistance breeding—a scientific and literature review. CTA, Wageningen

    Google Scholar 

  • Thorpe KW (1985) Effects of height and habitat type on egg parasitism by Trichogramma minutum and T. pretiosum (Hymenoptera: Trichogrammatidae). Agric Ecosyst Environ 12:117–126

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 37:141–172

    Article  Google Scholar 

  • Vinson SB (1998) The general host selection behavior of parasitoid hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol Control 11:79–96

    Article  Google Scholar 

  • Vos M, Vet LEM (2004) Geographic variation in host acceptance by an insect parasitoid: genotype versus experience. Evol Ecol Res 6:1021–1035

    Google Scholar 

Download references

Acknowledgments

We thank Kris Wyckhuys and two anonymous reviewers for helpful comments on the manuscript, and Nathalie Lezcano for technical assistance during the experimentations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Tabone.

Additional information

Communicated by M. Traugott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tabone, E., Bardon, C., Desneux, N. et al. Parasitism of different Trichogramma species and strains on Plutella xylostella L. on greenhouse cauliflower. J Pest Sci 83, 251–256 (2010). https://doi.org/10.1007/s10340-010-0292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-010-0292-7

Keywords

Navigation