Skip to main content
Log in

Structural Design Optimization Based on the Moving Baseline Strategy

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Structural design optimization has always been a topic of concern in industry because good design can improve the safety and economic efficiency of structures during their service periods. Selecting the appropriate optimization algorithm is the key to solving structural optimal design problems. In this study, a new global optimization idea is proposed and named the moving baseline strategy. A baseline is initially set and will be repeatedly moving upward or downward to approach the optimal value. The proposed strategy is a simple but effective, general, and stable algorithm that can be used to solve constrained and unconstrained structural optimization problems. Different from traditional gradient-based, stochastic and heuristic algorithms, the developed algorithm provides a completely new idea to solve global or local optimization problems. Some unconstrained and constrained numerical benchmark examples are used to test the proposed methodology. In addition, structural optimal design problems of a ten-bar planar truss structure and a hypersonic wing structure (X-37B) are utilized to verify the effectiveness of the developed strategy in addressing structural design optimization problems in engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Liang JJ, Qin AK, Suganthan PN, Baskar S. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput. 2006;10(3):281–95.

    Article  Google Scholar 

  2. Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim. 1997;11(4):341–59.

    Article  MathSciNet  MATH  Google Scholar 

  3. Yang XS. Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer; 2009.

  4. Feng DZ, Feng HZ, Zhang HQ. Human behavior algorithms for highly efficient global optimization. ArXiv preprint arXiv:1507.04718. 2015.

  5. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220(4598):671–80.

    Article  MathSciNet  MATH  Google Scholar 

  6. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim. 2007;39(3):459–71.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cvijović D, Klinowski J. Taboo search: an approach to the multiple minima problem. Science. 1995;267(5198):664–6.

    Article  MathSciNet  MATH  Google Scholar 

  8. Barhen J, Protopopescu V, Reister D. TRUST: a deterministic algorithm for global optimization. Science. 1997;276(5315):1094–7.

    Article  MathSciNet  MATH  Google Scholar 

  9. Pardalos PM, Zhigljavsky A, Žilinskas J. Advances in stochastic and deterministic global optimization. Berlin: Springer; 2016.

    Book  MATH  Google Scholar 

  10. Lagouanelle JL, Soubry G. Optimal multisections in interval branch-and-bound methods of global optimization. J Global Optim. 2004;30(1):23–38.

    Article  MathSciNet  MATH  Google Scholar 

  11. Levy AV, Gómez S. The tunneling method applied to global optimization. Numer Optim. 1985;1981:213–44.

    MathSciNet  MATH  Google Scholar 

  12. Rubio-Solar M, Vega-Rodríguez MA, Pérez JMS, Gómez-Iglesias A, Cárdenas-Montes M, editors. A FPGA optimization tool based on a multi-island genetic algorithm distributed over grid environments. In: 2008 Eighth IEEE international symposium on cluster computing and the grid (CCGRID). IEEE; 2008.

  13. Gandomi AH, Yang XS, Alavi AH. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput. 2013;29(1):17–35.

    Article  Google Scholar 

  14. Mei YL, Wang XM. A level set method for structural topology optimization and its applications. Adv Eng Softw. 2004;35(7):415–41.

    Article  MATH  Google Scholar 

  15. Svanberg K. The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng. 1987;24(2):359–73.

    Article  MathSciNet  MATH  Google Scholar 

  16. Han SY, Kim MS, Kim SR, Lee WG, Yu JS, Park JY, editors. P-01 topology optimization of a PCB substrate based on evolutionary structural optimization. In: The abstracts of ATEM: international conference on advanced technology in experimental mechanics: Asian conference on experimental mechanics 20076. The Japan Society of Mechanical Engineers; 2007.

  17. Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Comput Struct. 1993;49(5):885–96.

    Article  Google Scholar 

  18. Wang SG, Yao JC, Huang YY, Zhong WF, Lin JM. An efficient genetic algorithm for large scale built-up structural optimization. Acta Mech Solida Sin. 1994;7(1):29–38.

    Google Scholar 

  19. Adeli H, Cheng NT. Augmented Lagrangian genetic algorithm for structural optimization. J Aerosp Eng. 1994;7(1):104–18.

    Article  Google Scholar 

  20. Pan J, Wang DY. Topology optimization of truss structure with fundamental frequency and frequency domain dynamic response constraints. Acta Mech Solida Sin. 2006;19(3):231–40.

    Article  Google Scholar 

  21. Liu YS, Wang XJ, Wang L. A dynamic evolution scheme for structures with interval uncertainties by using bidirectional sequential Kriging method. Comput Methods Appl Mech Eng. 2019;348:712–29.

    Article  MathSciNet  Google Scholar 

  22. Lv Z, Qiu ZP. An iteration method for predicting static response of nonlinear structural systems with non-deterministic parameters. Appl Math Model. 2019;68:48–65.

    Article  MathSciNet  Google Scholar 

  23. Lv Z, Liu H. Uncertainty modeling for vibration and buckling behaviors of functionally graded nanobeams in thermal environment. Compos Struct. 2018;184:1165–76.

    Article  Google Scholar 

  24. Lv Z, Qiu ZP, Li Q. An interval reduced basis approach and its integrated framework for acoustic response analysis of coupled structural-acoustic system. J Comput Acoust. 2017;25(03):1750009.

    Article  MathSciNet  Google Scholar 

  25. Wang L, Wang XJ, Xia Y. Hybrid reliability analysis of structures with multi-source uncertainties. Acta Mech. 2014;225(2):413–30.

    Article  MATH  Google Scholar 

  26. Wang XJ, Shi QH, Fan WC, Wang RX, Wang L. Comparison of the reliability-based and safety factor methods for structural design. Appl Math Model. 2019;72:68–84.

    Article  MathSciNet  Google Scholar 

  27. Wu L, Liu Q, Tian X, Zhang JX, Xiao WS. A new improved fruit fly optimization algorithm IAFOA and its application to solve engineering optimization problems. Knowl Based Syst. 2018;144:153–73.

    Article  Google Scholar 

  28. Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: harmony search. Simulation. 2001;76(2):60–8.

    Article  Google Scholar 

  29. Lee KS, Geem ZW. A new structural optimization method based on the harmony search algorithm. Comput Struct. 2004;82(9–10):781–98.

    Article  Google Scholar 

  30. Degertekin S. Improved harmony search algorithms for sizing optimization of truss structures. Comput Struct. 2012;92:229–41.

    Article  Google Scholar 

  31. Liu X, Cai GP, Peng FJ, Zhang H. Piezoelectric actuator placement optimization and active vibration control of a membrane structure. Acta Mech Solida Sin. 2018;31(1):66–79.

    Article  Google Scholar 

  32. Ge R, Chen JQ, Wei JH. Reliability-based design of composites under the mixed uncertainties and the optimization algorithm. Acta Mech Solida Sin. 2008;21(1):19–27.

    Article  Google Scholar 

  33. Chen JQ, Tang YF, Huang XX. Application of surrogate based particle swarm optimization to the reliability-based robust design of composite pressure vessels. Acta Mech Solida Sin. 2013;26(5):480–90.

    Article  Google Scholar 

  34. Törn A, Žilinskas A. Global optimization. Berlin: Springer; 1989.

    Book  MATH  Google Scholar 

  35. Aluffi-Pentini F, Parisi V, Zirilli F. Global optimization and stochastic differential equations. J Optim Theory Appl. 1985;47(1):1–16.

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu Y, Kang LS, Evans DJ. The annealing evolution algorithm as function optimizer. Parallel Comput. 1995;21(3):389–400.

    Article  MathSciNet  MATH  Google Scholar 

  37. Runarsson TP, Yao X. Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput. 2000;4(3):284–94.

    Article  Google Scholar 

Download references

Acknowledgements

The work of Xiaojun Wang was supported by the National Nature Science Foundation of China (Nos. 11872089, 11572024, 11432002) and the Defense Industrial Technology Development Programs (Nos. JCKY2016204B101, JCKY2017601B001, JCKY2018601B001). Besides, the authors wish to express their many thanks to the reviewers for their useful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ren, Q., Chen, W. et al. Structural Design Optimization Based on the Moving Baseline Strategy. Acta Mech. Solida Sin. 33, 307–326 (2020). https://doi.org/10.1007/s10338-019-00144-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-019-00144-0

Keywords

Navigation