Skip to main content
Log in

Size-Exclusion Chromatography: A Twenty-First Century Perspective

  • Perspective Article
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Now in its sixth decade, size-exclusion chromatography (SEC) remains the premier method by which to determine the molar mass averages and distributions of natural and synthetic macromolecules. Aided by its coupling to a variety and multiplicity of detectors, it has also shown its ability to characterize a host of other physicochemical properties, such as branching, chemical, and sequence length heterogeneity size distribution; chain rigidity; fractal dimension and its change as a function of molar mass; etc. SEC is also an integral part of most macromolecular two-dimensional separations, providing a second-dimension size-based technique for determining the molar mass of the components separated in the first dimension according to chemical composition, thus yielding the combined chemical composition and molar mass distributions of a sample. While the potential of SEC remains strong, our awareness of the pitfalls and challenges inherent to it and to its practice must also be ever-present. This Perspective aims to highlight some of the advantages and applications of SEC, to bring to the fore these caveats with regard to its practice, and to provide an outlook as to potential areas for expansion and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography, 2nd edn. Wiley, Hoboken

    Book  Google Scholar 

  2. Wheaton RM, Bauman WC (1953) Ann NY Acad Sci 57:159–176

    Article  CAS  Google Scholar 

  3. Porath J, Flodin P (1959) Nature 183:1657–1659

    Article  CAS  Google Scholar 

  4. Moore JC (1964) J Polym Sci A 2:835–843

    Google Scholar 

  5. Striegel AM (2005) Anal Chem 77(5):104A-113A

    Article  CAS  Google Scholar 

  6. Kilz P, Krüger R-P, Much H, Schulz G (1995). In: Provder T, Barth HG, Urban MW (eds) Chromatographic characterization of polymers—hyphenated and multidimensional techniques. Advances in chemistry series, vol 247. American Chemical Society, Washington, DC, pp 223–241

    Chapter  Google Scholar 

  7. Schoenmakers P, Aarnoutse P (2014) Anal Chem 86:6172–6179

    Article  CAS  Google Scholar 

  8. Ouano AC (1972) J Polym Sci A-1 10:2169–2180

    Article  CAS  Google Scholar 

  9. Striegel AM (2020) TRAC Trends Anal Chem 130:115990

    Article  CAS  Google Scholar 

  10. Rowland SM, Striegel AM (2012) Anal Chem 84:4812–4820

    Article  CAS  Google Scholar 

  11. Boone MA, Striegel AM (2006) Macromolecules 39:4128–4131

    Article  CAS  Google Scholar 

  12. Boone MA, Nymeyer H, Striegel AM (2008) Carbohydr Res 343:132–138

    Article  CAS  Google Scholar 

  13. Striegel AM, Boone MA (2011) Biopolymers 95:228–233

    Article  CAS  Google Scholar 

  14. Morris MJ, Striegel AM (2014) Carbohydr Polym 106:230–237

    Article  CAS  Google Scholar 

  15. Meunier DM, Li Y, Gao W (2018). In: Wang Y, Gao W, Orski S, Liu XM (eds) Recent progress in separation of polymers and particulates. ACS symposium series, vol 1281. American Chemical Society, Washington, DC, pp 89–109

    Google Scholar 

  16. Striegel AM, Trainoff SP (2021) Chromatographia 84:37–45

    Article  CAS  Google Scholar 

  17. Sinha P, Striegel AM (2019) Anal Chim Acta 1053:186–195

    Article  Google Scholar 

  18. Pasch H (2021) Chromatographia 84:525–530

    Article  CAS  Google Scholar 

  19. Viktor Z, Pasch H (2020) Anal Chim Acta 1107:225–232

    Article  CAS  Google Scholar 

  20. Pitkänen L, Striegel AM (2016) TRAC-Trends Anal Chem 80:311–320

    Article  Google Scholar 

  21. Berek D (2010) J Sep Sci 33:315–335

    Article  CAS  Google Scholar 

  22. Podzimek S (2014) J Appl Polym Sci 40111

  23. Brewer AK (2021) Chromatographia 84:807–811

    Article  CAS  Google Scholar 

  24. Podzimek S, Johann C (2021) Chromatographia 84:531–534

    Article  CAS  Google Scholar 

  25. Striegel AM (2017). In: Fanali S, Haddad PR, Poole CF, Riekkola M-L (eds) Liquid chromatography: fundamentals and instrumentation, 2nd edn. Elsevier, Amsterdam, pp 245–273

    Chapter  Google Scholar 

  26. Striegel AM (2017) Chromatographia 80:989–996

    Article  CAS  Google Scholar 

  27. Uliyanchenko E, Schoenmakers PJ, van der Wal S (2011) J Chromatogr A 1218:1509–1518

    Article  CAS  Google Scholar 

  28. Uliyanchenko E, van der Wal S, Schoenmakers PJ (2011) J Chromatogr A 1218:6930–6942

    Article  CAS  Google Scholar 

  29. Striegel AM (2008) J Liq Chromatogr Rel Technol 31:3105–3114

    Article  CAS  Google Scholar 

  30. Striegel AM, Isenberg SL, Côté GL (2009) Anal Bioanal Chem 394:1887–1893

    Article  CAS  Google Scholar 

  31. Isenberg SL, Brewer AK, Côté GL, Striegel AM (2010) Biomacromol 11:2505–2511

    Article  CAS  Google Scholar 

  32. Brewer AK, Striegel AM (2011) Anal Chem 83:3068–3075

    Article  CAS  Google Scholar 

  33. Striegel AM (2013) Anal Bioanal Chem 405:8959–8967

    Article  CAS  Google Scholar 

  34. Janco M, Alexaner JN IV, Bouvier ESP, Morrison D (2013) J Sep Sci 36:2718–2727

    Article  CAS  Google Scholar 

  35. Striegel AM (2014) J Chromatogr A 1359:147–155

    Article  CAS  Google Scholar 

  36. Uliyanchenko E, Cools PJCH, van der Wal S, Schoenmakers PJ (2012) Anal Chem 84:7802–7809

    Article  CAS  Google Scholar 

  37. Hutchings LR, Pagliarulo A (2021) Chromatographia 84:813–818

    Article  CAS  Google Scholar 

  38. Malik MI (2021) Chromatographia 84:1089–1094

    Article  CAS  Google Scholar 

  39. Staal WJ (2022) Chromatographia 85:1–5

    Article  CAS  Google Scholar 

  40. Kovarik ML (2021) LCGC Blog, August 2 https://www.chromatographyonline.com/view/the-lcgc-blog-polymers-macromolecules-and-nanomaterials-in-the-separation-science-curriculum

Download references

Funding

There is no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André M. Striegel.

Ethics declarations

Conflict of interest

There is no conflict of interest to report.

Ethical approval

This article does not contain any studies with animals or human participants.

Disclaimer

Commercial products are identified to specify the experimental procedure adequately. Such identification does not imply endorsement or recommendation by the National Institute of Standards and Technology, nor does it imply that the materials identified are necessarily the best available for the purpose. The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the National Institute of Standards and Technology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Striegel, A.M. Size-Exclusion Chromatography: A Twenty-First Century Perspective. Chromatographia 85, 307–313 (2022). https://doi.org/10.1007/s10337-022-04143-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04143-1

Keywords

Navigation