Skip to main content
Log in

Preparation and Application of Needle Extraction Device Packed with Sol–gel-Derived Perhydroxy Cucurbit[6]uril Coating Fiber

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A novel needle extraction device packed with heat-resistant fibers coated with perhydroxy cucurbit[6]uril by sol–gel technology was first developed for the analysis of polycyclic aromatic hydrocarbons in actual water samples. Its performance was tested via purge and trap microextraction coupled with gas chromatography. The strong adsorption affinity between polycyclic aromatic hydrocarbons and (OH)12Q[6] was attributed to C–H···π interactions and ππ interactions. The parameters of the extraction device, such as extraction volume, extraction temperature, desorption time, ionic strength, and fiber number, were optimized. Under optimized conditions, the as-prepared extraction device showed good linearity within 0.5–1,500 µg L−1 with low detection limits (0.03–0.2 µg L−1). Moreover, the durability of the needle extraction device was excellent and can be used for 60 cycles. Furthermore, the loss rates of the coating fiber were less than 10% after storage for 3 days at room temperature, and the RSD was less than 6.4%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wei MC, Jen JF (2007) Talanta 72:1269–1274

    Article  CAS  PubMed  Google Scholar 

  2. Shailaja MS, Silva CD (2004) Chemosphere 53:835–841

    Article  CAS  Google Scholar 

  3. Beltran A, Borrull F, Marcé RM, Cormack PAG (2010) TrAC 29:1363–1375

    CAS  Google Scholar 

  4. Farré M, Pérez S, Gonçalves C, Alpendurada MF, Barceló D (2010) TrAC 29:1347–1362

    Google Scholar 

  5. Song XL, Li JH, Liao CY, Chen LX (2011) Chromatographia 74:89–98

    Article  CAS  Google Scholar 

  6. Ma JP, Li M, Li JH, Rui CJ, Xin YP, Chen LX (2011) J Chromatogr Sci 49:683–688

    Article  CAS  PubMed  Google Scholar 

  7. Hawthorne SB, Steven B (1990) Anal Chem 62:633A–642A

    Article  CAS  Google Scholar 

  8. Arthur CL, Catherine L, Pawliszyn J (1990) Anal Chem 62:2145–2148

    Article  CAS  Google Scholar 

  9. Demeestere K, Dewulf J, Witte BD, Langenhove HV (2007) J Chromatogr A 1153:130–144

    Article  CAS  PubMed  Google Scholar 

  10. Ouyang G, Pawliszyn J (2006) Janusz. TrAC 25:692–703

    CAS  Google Scholar 

  11. Nakamura S, Daishima S, Aca J (2005) Anal Chim Acta 548:79–85

    Article  CAS  Google Scholar 

  12. Maleki S, Hashemi P, Rasolzadeh F, Saba M, Reza GA (2018) Automatic fraction collection system for vapor phase. J Chromatogr Sci. https://doi.org/10.1093/chromsci/bmy056

    Article  PubMed  Google Scholar 

  13. Lou D, Chen H, Wang X (2016) J Sep Sci 39:3769–3774

    Article  CAS  PubMed  Google Scholar 

  14. Lord HL, Zhan W, Pawliszyn J (2010) Anal Chim Acta 667:3–18

    Article  CAS  Google Scholar 

  15. Bagheri H, Ayazi Z, Aghakhani A (2011) Anal Chim Acta 683:212–220

    Article  CAS  PubMed  Google Scholar 

  16. Bagheri H, Roostaie A, Babanezhad E (2011) Chromatographia 74:429–436

    Article  CAS  Google Scholar 

  17. Saito Y, Ueta I, Ogawa M, Abe A, Yogo K, Shirai S, Jinno K (2009) Anal Bioanal Chem 393:861–869

    Article  CAS  PubMed  Google Scholar 

  18. Brinker CJ, Scherer GW (1991) Adv Mater 3:522–523

    Article  Google Scholar 

  19. Livage J, Sanchez C, Henry M, Doeuff S (1989) Solid State Ionics 32:633–638

    Article  Google Scholar 

  20. Chong SL, Wang D, Hayes JD, Malik BWWA (1997) Anal Chem 69:3889–3898

    Article  CAS  PubMed  Google Scholar 

  21. Liu M, Zeng Z, Xiong B (2005) J Chromatogr A 1065:287–299

    Article  CAS  PubMed  Google Scholar 

  22. Zeng Z, Qiu W, Huang Z (2001) Anal Chem 73:2429–2436

    Article  CAS  PubMed  Google Scholar 

  23. Djozan D, Ebrahimi B, Mahkam M, Farajzadeh MA (2010) Anal Chim Acta 674:40–48

    Article  CAS  PubMed  Google Scholar 

  24. Es-Haghi A, Hosseini SM, Khoshhesab ZM (2012) Anal Chim Acta 742:74–79

    Article  CAS  PubMed  Google Scholar 

  25. Lee JW, Samal S, Selvapalam N, Kim H, Kim K (2003) Cheminform 36:621–630

    CAS  Google Scholar 

  26. Sang YJ, Selvapalam N, Dong HO, Kim SY (2003) J Am Chem Soc 125:10186–10187

    Article  CAS  Google Scholar 

  27. Saito Y, Imaizumi M, Ban K, Tahara A, Wada H, Jinno K (2004) J Chromatogr A 1025:27–32

    Article  CAS  PubMed  Google Scholar 

  28. Ueta I, Razak NA, Mizuguchi A, Kawakubo S, Saito Y, Jinno K (2013) J Chromatogr A 1317:211–216

    Article  CAS  PubMed  Google Scholar 

  29. Ni XL, Xiao X, Cong H, Zhu Q, Xue SF, Tao Z (2014) Acc Chem Res 47:1386–1395

    Article  CAS  PubMed  Google Scholar 

  30. Chen K, Kang YS, Zhao Y, Yang JM, Lu Y, Sun WY (2014) J Am Chem Soc 136:16744–16747

    Article  CAS  PubMed  Google Scholar 

  31. Gao ZW, Feng X, Mu L, Ni XL, Liang LL, Xue SF, Tao Z, Zeng X (2013) Dalton Trans 42:2608–2615

    Article  CAS  PubMed  Google Scholar 

  32. Zhao G, Chen Y, Wang S (2013) Talanta 116:822–826

    Article  CAS  PubMed  Google Scholar 

  33. Aguinaga N, Campillo N, Vi-nas P, Hern´andez-C´ordoba M (2007) Anal Chim Acta 596:285–290

    Article  CAS  PubMed  Google Scholar 

  34. Zhang LF, Liu XJ, Liu CX, Zeng ZR (2007) Chin J Anal Chem 35:1269–1273

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant numbers 21375046, 21605056), the Project of Science and Technology Development of Jilin Province (Grant number 20140203013GX), and the Natural Science Foundation of Jilin Province (Grant number 20180101292JC). The financial support from the Key Laboratory of Fine Chemicals of Jilin Province is also acknowledged.

Funding

This study was supported by the National Natural Science Foundation of China (Grant numbers 21375046, 21605056), the Project of Science and Technology Development of Jilin Province (Grant number 20140203013GX), and the Natural Science Foundation of Jilin Province (Grant number 20180101292JC). The financial support from the Key Laboratory of Fine Chemicals of Jilin Province is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Lou.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, J., Lian, L. et al. Preparation and Application of Needle Extraction Device Packed with Sol–gel-Derived Perhydroxy Cucurbit[6]uril Coating Fiber. Chromatographia 82, 953–960 (2019). https://doi.org/10.1007/s10337-019-03720-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03720-1

Keywords

Navigation