Skip to main content
Log in

Evaluation of Rice Husk for SPE of Fluoroquinolones from Environmental Waters Followed by UHPLC-HESI-MS/MS

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Untreated rice husk (RH) was evaluated as solid-phase extraction (SPE) sorbent for Fluoroquinolone antibiotics (FQs). This natural material, made of cellulose, hemicellulose, lignin and silica, and containing various functional groups, i.e., carboxyl, hydroxyl, and amidogen residues, is a potential sorbent material for polar aromatics like FQs. First, the RH capability to adsorb FQ species from water was studied by batch sorption experiments in tap and river waters, and the experimental data, fitted by the Langmuir model, gave adsorption capacities up to 32 mg g−1. Then, RH was tested as column-packed sorbent for pre-concentration of tap and not tampered river waters spiked with six widely employed FQs, i.e., Ciprofloxacin, Danofloxacin, Enrofloxacin, Levofloxacin, Marbofloxacin, and Norfloxacin. The analytes were quantitatively adsorbed on the RH cartridge at the native pH, simultaneously eluted by NH3–MeOH mixture, separated in an 8 min ultrahigh-performance liquid chromatography run and quantified/confirmed by electrospray ionization tandem mass spectrometric detection in single reaction monitoring mode. Recoveries in the range 71–120% were observed (RSD < 15%, n = 3) for 75–1000 ng L−1 spikes. Method detection limits were in the range 25–33 ng L−1. The batch-to-batch reproducibility was assessed, and the analytical procedure was applied to the determination of FQs in actual environmental waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crini G, Badot PM (2010) Sorption processes and pollution: conventional and non-conventional sorbents for pollutant removal from wastewater. Presses Universitaires de Franche-Comté, Besançon

    Google Scholar 

  2. Ali I, Asim M, Khan TA (2012) J Environ Management 113:170–183

    Article  CAS  Google Scholar 

  3. Akhtar M, Bhanger MI, Iqbal S, Hasany SM (2006) J Hazard Mater 128:44–52

    Article  CAS  Google Scholar 

  4. Foo KY, Hameed BH (2009) Adv Colloid Interface Sci 152:39–47

    Article  CAS  Google Scholar 

  5. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Desalination 265:159–168

    Article  CAS  Google Scholar 

  6. Chuah TG, Jumasiah A, Azni I, Katayon S, Choong SYT (2005) Desalination 175:305–316

  7. Chakraborty S, Chowdhury S, Das Saha P (2011) Carbohydr Polym 86:1533–1541

    Article  Google Scholar 

  8. Safa Y, Bhatti HN (2011) Desalination 272:313–322

    Article  CAS  Google Scholar 

  9. Gautam RK, Mudhoo A, Lofrano G, Chattopadhyaya MC (2014) J Environ Chem Eng 2:239–259

    Article  CAS  Google Scholar 

  10. Dalai C, Jha R, Desai VR (2015) Aquatic Procedia 4:1126–1133

    Article  Google Scholar 

  11. Ashrafi SD, Kamani H, Jaafari J, Mahvi AH (2016) Desalin Water Treat 57:16456–16465

    Article  CAS  Google Scholar 

  12. Reemtsma T, Jekel M (2006) Organic pollutant in the water cycle. Wiley-VCH, Weinheim

    Book  Google Scholar 

  13. Sturini M, Speltini A, Maraschi F, Pretali L, Profumo A, Fasani E, Albini A, Migliavacca R, Nucleo E (2012) Water Res 46:5575–5582

    Article  CAS  Google Scholar 

  14. Sturini M, Speltini A, Maraschi F, Pretali L, Ferri EN, Profumo A (2015) Chemosphere 134:313–318

    Article  CAS  Google Scholar 

  15. Lillenberg M, Yurchenko S, Kipper K, Herodes K, Pihl V, Sepp K, Lõhmus R, Nei L (2009) J Chromatogr A 1216:5949–5954

    Article  CAS  Google Scholar 

  16. Speltini A, Sturini M, Maraschi F, Viti S, Sbarbada D, Profumo A (2015) J Chromatogr A 1410:44–50

    Article  CAS  Google Scholar 

  17. Speltini A, Sturini M, Maraschi F, Profumo A (2010) J Sep Sci 33:1115–1131

    CAS  Google Scholar 

  18. Speltini A, Sturini M, Maraschi F, Profumo A, Albini A (2011) Trends Anal Chem 30:1337–1350

    Article  CAS  Google Scholar 

  19. Van Doorslaer X, Dewulf J, Van Langenhove H, Demeestere K (2014) Sci Total Environ 500–501:250–269

    Article  Google Scholar 

  20. Speltini A, Sturini M, Maraschi F, Consoli L, Zeffiro A, Profumo A (2015) J Chromatogr A 1379:9–15

    Article  CAS  Google Scholar 

  21. Kusari S, Prabhakaran D, Lamshöft M, Spiteller M (2009) Environ Pollut 157:2722–2730

    Article  CAS  Google Scholar 

  22. Sukul P, Lamshöft M, Kusari S, Zühlke S, Spiteller M (2009) Environ Res 109:225–231

    Article  CAS  Google Scholar 

  23. Sirtori C, Zapata A, Gernjak W, Malato S, Agüera A (2012) Chemosphere 88:627–634

    Article  CAS  Google Scholar 

  24. Dorival-García N, Zafra-Gómez A, Cantarero S, Navalón A, Vílchez JL (2013) Microchem J 106:323–333

    Article  Google Scholar 

  25. Speltini A, Sturini M, Maraschi F, Porta A, Profumo A (2016) Talanta 147:322–327

    Article  CAS  Google Scholar 

  26. Vazquez-Roig P, Segarra R, Blasco C, Andreu V, Picó Y (2010) J Chromatogr A 1217:2471–2483

    Article  CAS  Google Scholar 

  27. Chen B, Wang W, Huang Y (2012) Talanta 88:237–243

    Article  CAS  Google Scholar 

  28. Song ST, Saman N, Johari K, Mat H (2014) Clean Techn Environ Policy 16:1747–1755

    Article  CAS  Google Scholar 

  29. Sturini M, Speltini A, Pretali L, Fasani E, Profumo A (2009) J Sep Sci 32:3020–3028

    Article  CAS  Google Scholar 

  30. Xu S, Jiang C, Lin YX, Jia L (2012) Microchim Acta 179:257–264

    Article  CAS  Google Scholar 

  31. Huang XJ, Wang YL, Liu Y, Yuan DX (2013) J Sep Sci 36:3210–3219

    CAS  Google Scholar 

  32. Speltini A, Sturini M, Maraschi F, Mandelli E, Vadivel D, Dondi D, Profumo A (2016) Microchim Acta 183:2241–2249

    Article  CAS  Google Scholar 

  33. Mei M, Huang X (2016) J Sep Sci 39:1908–1918

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Elisa Rivagli for her contribution to the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Sturini.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maraschi, F., Speltini, A., Sturini, M. et al. Evaluation of Rice Husk for SPE of Fluoroquinolones from Environmental Waters Followed by UHPLC-HESI-MS/MS. Chromatographia 80, 577–583 (2017). https://doi.org/10.1007/s10337-017-3272-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-017-3272-8

Keywords

Navigation