Skip to main content

Advertisement

Log in

Determination of Gaseous Formic and Acetic Acids by a Needle-Type Extraction Device coupled to a Gas Chromatography-Barrier Discharge Ionization Detector

  • Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Gaseous formic acid (FA) and acetic acid (AA) were concentrated by a needle-type extraction device, and the extracted analytes were determined using a gas chromatography-barrier discharge ionization detector. An activated carbon particle showed good extraction/desorption performance for FA and AA. The limit of quantification for FA and AA was 900 and 180 ng L−1 at sample volumes of 100 mL, and 150 and 30 ng L−1 at a sample volume of 600 mL, respectively. The storage performance of the analytes in the extraction needle was quantitatively evaluated at different temperatures, and the applicability of the proposed method to determine FA and AA in air samples was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Niklasson A, Johans LG, Svensson JE (2008) The influence of relative humidity and temperature on the acetic acid vapour-induced atmospheric corrosion of lead. Corros Sci 50:3031–3037

    Article  CAS  Google Scholar 

  2. Fingšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corrs Sci 86:17–41

    Article  Google Scholar 

  3. Gibson LT, Watt CM (2010) Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corros Sci 52:172–178

    Article  CAS  Google Scholar 

  4. Grzywacz CM (2006) Monitoring for gaseous pollutants in museum environments. The Getty Conservaton Institute, Los Angeles

    Google Scholar 

  5. NIOSH Pocket Guide to Chemical Hazards #0296 (2007) National Institute for Occupational Safety and Health (NIOSH)

  6. NIOSH Manual of Analytical Methods (NMAM) Method 2011, 4th Ed (1994) National Institute for Occupational Safety and Health (NIOSH)

  7. Gibson LT, Cooksey BG, Littlejohn L, Tennent NH (1997) A diffusion tube sampler for the determination of acetic acid and formic acid vapors in museum cabinets. Anal Chim Acta 341:11–19

    Article  CAS  Google Scholar 

  8. Amati B, DiPalo V, Possanzini M (1999) Simultaneous determination of inorganic and organic acids in air by use of annular denuders and ion chromatography. Chromatographia 50:150–154

    Article  CAS  Google Scholar 

  9. Possanzini M, Tagliacozzo G, Cecinato A (2007) Simultaneous determination of formic acid and lower carbonyls in air samples by DNPH derivatization. J Sep Sci 30:2460–2465

    Article  CAS  Google Scholar 

  10. Hemenway JN, Carvalho TC, Rao VM, Wu Y, Levons JK, Narang AS, Paruchuri SR, Stamato HJ, Varia SA (2012) Formation of reactive impurities in aqueous and neat polyethylene glycol 400 and effects of antioxidants and oxidation inducers. J Pharm Sci 101:3305–3318

    Article  CAS  Google Scholar 

  11. NIOSH Manual of Analytical Methods (NMAM) Method 1603, 4th Ed (1994) National Institute for Occupational Safety and Health (NIOSH)

  12. Esposito GG, Schaefer KKA (1976) Gas chromatographic determination of acetic acid in industrial atmosphere and waste water. Am Ind Hyg Assoc J 37:268–273

    Article  CAS  Google Scholar 

  13. Alonso L, Fraga MJ (2001) Simple and rapid analysis for quantitation of the most important volatile flavor compounds in yogurt by headspace gas chromatography–mass spectrometry. J Chromatogr Sci 39:297–300

    Article  CAS  Google Scholar 

  14. Ryhl-Svendsen M, Glastrup J (2002) Acetic acid and formic acid concentrations in the museum environment measured by SPME-GC/MS. Atmos Environ 36:3909–3916

    Article  CAS  Google Scholar 

  15. Frink LA, Weatherly CA, Armstrong DW (2014) Water determination in active pharmaceutical ingredients using ionic liquid headspace gas chromatography and two different detection protocols. J Pharm Biomed Anal 94:111–117

    Article  CAS  Google Scholar 

  16. Franchina FA, Maimone M, Sciarrone D, Purcaro G, Tranchida PQ, Mondello L (2015) Evaluation of a novel helium ionization detector within the context of (low-) flow modulation comprehensive two-dimensional gas chromatography. J Chromatogr A 1402:102–109

    Article  CAS  Google Scholar 

  17. Demeestere K, Dewulf J, Witte BD, Langenhove HV (2007) Sample preparation for the analysis of volatile organic compounds in air and water matrices. J Chromatogr A 1153:130–144

    Article  CAS  Google Scholar 

  18. Lord HL, Zhan W, Pawliszyn J (2010) Fundamentals and applications of needle trap devices: a critical review. Anal Chim Acta 677:3–18

    Article  CAS  Google Scholar 

  19. Vas G, Vékey K (2004) Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis. J Mass Spectrom 39:233–254

    Article  CAS  Google Scholar 

  20. Saito Y, Ueta I, Ogawa M, Abe A, Yogo K, Shirai S, Jinno K (2009) Fiber-packed needle-type sample preparation device designed for gas chromatographic analysis. Anal Bioanal Chem 393:861–869

    Article  CAS  Google Scholar 

  21. Ueta I, Saito Y (2014) Needle-type extraction device designed for rapid and sensitive analysis in gas chromatography. Anal Sci 30:105–110

    Article  CAS  Google Scholar 

  22. Saito Y, Ueta I, Kotera K, Ogawa M, Wada H, Jinno K (2006) In-needle extraction device designed for gas chromatographic analysis of volatile organic compounds. J Chromatogr A 1106:190–195

    Article  CAS  Google Scholar 

  23. Ueta I, Samsudin EL, Mizuguchi A, Takeuchi H, Shinki T, Kawakubo S, Saito Y (2014) Double-bed-type extraction needle packed with activated-carbon-based sorbents for very volatile organic compounds. J Pharm Biomed Anal 88:423–428

    Article  CAS  Google Scholar 

  24. Ueta I, Saito Y, Hosoe M, Okamoto M, Ohkita H, Shirai S, Tamura H, Jinno K (2009) Breath acetone analysis with miniaturized sample preparation device: in-needle preconcentration and subsequent determination by gas chromatography-mass spectroscopy. J Chromatogr B 877:2551–2556

    Article  CAS  Google Scholar 

  25. Ueta I, Saito Y, Teraoka K, Miura T, Jinno K (2010) Determination of volatile organic compounds for a systematic evaluation of third-hand smoking. Anal Sci 26:569–574

    Article  CAS  Google Scholar 

  26. Ueta I, Mitsumori T, Suzuki Y, Kawakubo S, Saito Y (2015) Determination of very volatile organic compounds in water samples by purge and trap analysis with a needle-type extraction device. J Chromatogr A 1397:27–31

    Article  CAS  Google Scholar 

  27. Alonso M, Godayol A, Antico E, Sanchez JM (2011) Needle microextraction trap for on-site analysis of airborne volatile compounds at ultra-trace levels in gaseous samples. J Sep Sci 34:2705–2711

    Article  CAS  Google Scholar 

  28. Trefz P, Kischkel S, Hein D, James ES, Schubert JK, Miekisch W (2012) Needle trap micro-extraction for VOC analysis: effects of packing materials and desorption parameters. J Chromatogr A 1219:29–38

    Article  CAS  Google Scholar 

  29. Ueta I, Mizuguchi A, Fujimura K, Kawakubo S, Saito Y (2012) Novel sample preparation technique with needle-type micro-extraction device for volatile organic compounds in indoor air samples. Anal Chim Acta 746:77–83

    Article  CAS  Google Scholar 

  30. Bagheri H, Roostaie A, Babanezhad E (2011) New grafted nanosilica-based sorbent for needle trap extraction of polycyclic aromatic hydrocarbons from water samples followed by GC/MS. Chromatographia 74:429–436

    Article  CAS  Google Scholar 

  31. Ogawa M, Saito Y, Shirai S, Kiso Y, Jinno K (2009) Determination of bisphenol A in water using a packed needle extraction device. Chromatographia 69:685–690

    Article  CAS  Google Scholar 

  32. Low DW, Lee X, Pawliszyn J (2008) Extraction of formic and acetic acids from aqueous solution by dynamic headspace-needle trap extraction temperature and pH optimization. J Chromatogr A 1201:228–234

    Article  Google Scholar 

  33. Lee X, Huang D, Lou D, Pawliszyn J (2012) Needle trap extraction for GC analysis of formic and acetic acids in aqueous solution. J Sep Sci 35:1675–1681

    Article  CAS  Google Scholar 

  34. Lee X, Zhang L, Huang D, An N, Yang F, Jiang W, Fang B (2013) Analysis of the stable carbon isotope composition of formic and acetic acids. Anal Biochem 436:178–186

    Article  CAS  Google Scholar 

  35. Ueta I, Saito Y, Teraoka K, Matsuura H, Fujimura K, Jinno K (2010) Novel fire investigation technique using needle extraction in gas chromatography. Anal Sci 26:1127–1132

    Article  CAS  Google Scholar 

  36. Bulushev DA, Beloshapkin S, Ross JRH (2010) Hydrogen from formic acid decomposition over Pd and Au catalysts. Catal Today 154:7–12

    Article  CAS  Google Scholar 

  37. Tedsree K, Li T, Jones S, Chan CWA, Yu KMK, Bagot PAJ, Marquis EA, Smith GDW, Tsang SCE (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst. Nature Nanotech 6:302–307

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Shimadzu Science Foundation, and JSPS KAKENHI (Grant Number 15K1785).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikuo Ueta.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueta, I., Nakamura, Y., Fujimura, K. et al. Determination of Gaseous Formic and Acetic Acids by a Needle-Type Extraction Device coupled to a Gas Chromatography-Barrier Discharge Ionization Detector. Chromatographia 80, 151–156 (2017). https://doi.org/10.1007/s10337-016-3201-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3201-2

Keywords

Navigation