Skip to main content
Log in

3,5-Dinitrobenzoyl-9-amino-9-deoxy-9-epiquinine as Pirkle-Anion Exchange Hybrid-Type Chiral Selector in High-Performance Liquid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A new chiral stationary phase was designed by introducing 9-amino-9-deoxy-9-epiquinine, one of the most versatile organocatalysts in asymmetric synthesis, as chiral scaffold. The derivatization of its amino group with the 3,5-dinitrobenzoyl (DNB) fragment provided hydrogen bonding and π–π donor/acceptor systems in addition to the quinoline and quinuclidine moieties having two nitrogen atoms with different basicities. The selector offers multiple interaction sites in both typical of the Pirkle-type phases and classical of weak-anion-exchanger phases. The immobilization step took place through thiol-ene addition onto 3-mercaptopropyl-silica gel and gave a grafting density of 180 µmol of chiral selector per gram of silica. A silica with reduced particle size (Daisogel silica, pore size 120 Å, particle size 2.5 µm, and specific surface area 343 m2 g−1) has been employed to improve the efficiency and the speed of separations. The chiral stationary phase was packed in a small format column (50 × 4.6 mm) that allowed, by van Deemter analysis, 180,000 plates/m and approximately 5.1 µm of plate height. The ability of chiral discrimination was then studied with more than 30 test compounds using both polar-organic and normal phase conditions. In polar-organic mode, N-protected amino acids, α-aryloxy carboxylic acids, as well the non-steroidal anti-inflammatory profens were analyzed. Interesting results were obtained in normal phase elution, where the chiral selector behaves like a Pirkle-type stationary phase. Aryl amides, esterified DNB-amino acids, benzodiazepines, and binaphthol were well resolved with a very good peak symmetry and in short analysis time (mainly in less than 5 min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cancelliere G, Ciogli A, D’Acquarica I, Gasparrini F, Kocergin J, Misiti D, Pierini M, Ritchie H, Simone P, Villani C (2010) J Chromatogr A 1217:990–999

    Article  CAS  Google Scholar 

  2. Kotoni D, Ciogli A, Molinaro C, D’Acquarica I, Kocergin J, Szczerba T, Ritchie H, Villani C, Gasparrini F (2012) Anal Chem 84:6805–6813

    Article  CAS  Google Scholar 

  3. Cavazzini A, Marchetti N, Guzzinati R, Pierini M, Ciogli A, Kotoni D, D’Acquarica I, Villani C, Gasparrini F (2014) TrAC 63:95–103

    CAS  Google Scholar 

  4. Sciascera L, Ismail O, Ciogli A, Kotoni D, Cavazzini A, Botta L, Szczerba T, Kocergin J, Villani C, Gasparrini F (2015) J Chromatogr A 1383:60–168

    Article  Google Scholar 

  5. Min Y, Sui Z, Liang Z, Zhang L, Zhang Y (2015) J Pharm Biomed Anal 114:247–253

    Article  CAS  Google Scholar 

  6. Ismail OH, Ciogli A, Villani C, De Martino M, Pierini M, Cavazzini A, Bell DS, Gasparrini F (2016) J Chromatogr A 1427:55–68

    Article  CAS  Google Scholar 

  7. Patel DC, Breitbach ZS, Wahab MF, Barhate CL, Armstrong DW (2015) Anal Chem 87(18):9137–9148

    Article  CAS  Google Scholar 

  8. Barhate CL, Breitbach ZS, Pinto EC, Regalado EL, Welch CJ, Armstrong DW (2015) J Chromatogr A 1426:241–247

    Article  CAS  Google Scholar 

  9. Chankvetadze B (2012) J Chromatogr A 1269:26–51

    Article  CAS  Google Scholar 

  10. Ali I, Aboul-Enein HY (2006) J Sep Sci 29:762–769

    Article  CAS  Google Scholar 

  11. Lämmerhofer M, Lindner W (1996) J Chromatogr A 74:33–48

    Article  Google Scholar 

  12. Maier NM, Nicoletti L, Lämmerhofer M, Lindner W (1999) Chirality 11:522–528

    Article  CAS  Google Scholar 

  13. Hoffmann CV, Pell R, Lämmerhofer M, Lindner W (2008) Anal Chem 80:8780–8789

    Article  CAS  Google Scholar 

  14. Armstrong DW, Tang Y, Chen S, Zhou Y, Bagwill C, Chen J-R (1994) Anal Chem 66:1473–1484

    Article  CAS  Google Scholar 

  15. D’Acquarica I, Gasparrini F, Misiti D, Pierini M, Villani C (2008) Adv Chromatogr 46:109–173

    Google Scholar 

  16. Pirkle WH, Finn JM (1981) J Org Chem 46:2935–2938

    Article  CAS  Google Scholar 

  17. Pirkle WH, Welch CJ, Lamm B (1992) J Org Chem 57:3854–3860

    Article  CAS  Google Scholar 

  18. Gasparrini F, Misiti D, Pierini M, Villani C (1996) J Chromatogr A 724:79–90

    Article  CAS  Google Scholar 

  19. Song CE (2009) Cinchona alkaloids in synthesis and catalysis, ligands, immobilization and organocatalysis. Wiley, Weinheim

    Book  Google Scholar 

  20. Cassani C, Martín-Rapún R, Arceo E, Bravo F, Melchiorre P (2013) Nat Prot 8:325–344

    Article  CAS  Google Scholar 

  21. Paradisi E, Righi P, Mazzanti A, Ranieri S, Bencivenni G (2012) Chem Commun 48:11178–11180

    Article  CAS  Google Scholar 

  22. Bencivenni G, Wu L-Y, Mazzanti A, Giannichi B, Pesciaioli F, Song M-P, Bartoli G, Melchiorre P (2009) Angew Chem Int Ed 48:7200–7203

    Article  CAS  Google Scholar 

  23. Melchiorre P (2012) Angew Chem Int Ed 51:9748–9770

    Article  CAS  Google Scholar 

  24. Connon SJ (2008) Chem Commum 14:2499–2510

    Article  Google Scholar 

  25. Maier NM, Greco E, Petrovaj J, Lindner W (2012) Acta Chim Slov 59:454–463

    CAS  Google Scholar 

  26. Krawinkler KH, Maier NM, Sajovic E, Lindner W (2004) J Chromatogr A 1053(1–2):119–131

    Article  CAS  Google Scholar 

  27. Kacprzak KM, Lindner W (2011) J Sep Sci 34:2391–2396

    Article  CAS  Google Scholar 

  28. Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) J Comput Chem 11:440–467

    Article  CAS  Google Scholar 

  29. Angelini G, Cerichelli G, Cerritelli S, Pierini M, Siani G, Villani C (2005) J Comput Aid Mol Des 19:259–269

    Article  CAS  Google Scholar 

  30. Moran A, Hamilton A, Bo C, Melchiorre P (2013) J Am Chem Soc 135:9091–9098

    Article  CAS  Google Scholar 

  31. Bürgi T, Baiker A (1998) J Am Chem Soc 120:12920–12926

    Article  Google Scholar 

  32. Dijkstra GDH, Kellogg RM, Wynberg H, Svendsen JS, Marko I, Sharpless KB (1989) J Am Chem Soc 111:8069–8076

    Article  CAS  Google Scholar 

  33. Prakash GKS, Wang F, Ni C, Shen J, Haiges R, Yudin AK, Mathew T, Olah GA (2011) J Am Chem Soc 133:9992–9995

    Article  CAS  Google Scholar 

  34. Fornstedt T, Zhong G, Guiochon G (1996) J Chromatogr A 741:1–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support by the national funding (Grant Sponsor Sapienza University) Contract No. C26A143MYA (2014). A special thank goes to Prof. F. Gasparrini and Prof. W. Lindner for the scientific support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Ciogli.

Ethics declarations

Conflict of Interest

The authors have declared no conflict of interest.

Additional information

Published in the topical collection Young Investigators in Separation Science with editors D. Mangelings, G. Massolini, G. K. E. Scriba, R. M. Smith, and A. M. Striegel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Martino, M., Bencivenni, G., Mazzanti, A. et al. 3,5-Dinitrobenzoyl-9-amino-9-deoxy-9-epiquinine as Pirkle-Anion Exchange Hybrid-Type Chiral Selector in High-Performance Liquid Chromatography. Chromatographia 80, 751–762 (2017). https://doi.org/10.1007/s10337-016-3161-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3161-6

Keywords

Navigation