Skip to main content
Log in

Field-Amplified Sample Injection-Capillary Electrophoresis for the Determination of Bisphenol A, α-Naphthol and β-Naphthol in Drinks and Lake Water

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

To improve the sensitivity of capillary electrophoresis, field-amplified sample injection (FASI) was developed to determine bisphenol A (BPA), α-naphthol (α-NAP) and β-naphthol (β-NAP) in drinks and lake water. Parameters (sample matrix, concentration of NaCl, water plug length, sample injection time and voltage) affecting FASI have been systematically investigated. Under optimum conditions, the sensitivity was improved 17.1-, 15.8- and 9.9-fold for BPA, α-NAP and β-NAP, respectively. The detection limits of BPA, α-NAP and β-NAP were 0.071, 0.038 and 0.081 μg mL−1 and the proposed method has been successfully applied to detect BPA, α-NAP and β-NAP in drinks and lake water with recoveries of 82.0–109.3 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Huang H, Li YX, Liu JT, Tong J, Su XG (2015) Detection of bisphenol A in food packaging based on fluorescent conjugated polymer PPESO3 and enzyme system. Food Chem 185:233–238

    Article  CAS  Google Scholar 

  2. Forbes VE, Aufderheide J, Warbritton R, Hoeven NV, Caspers N (2007) Does bisphenol A induce superfeminization in Marisa cornuarietis? Part II: toxicity test results and requirements for statistical power analyses. Ecotox Environ Safe 66:319–325

    Article  CAS  Google Scholar 

  3. Ballesteros-Gómez A, Rubio S, Pérez-Bendito D (2009) Analytical methods for the determination of bisphenol A in food. J Chromatogr A 1216:449–469

    Article  Google Scholar 

  4. Ortega-Algar S, Ramos-Martos N, Molina-Dı́az A (2003) A flow-through fluorimetric sensing device for determination of α- and β-naphthol mixtures using a partial least-squares multivariate calibration approach. Talanta 60:313–323

    Article  CAS  Google Scholar 

  5. Aktaş N, Çiçek H, Taşpınar Ünal A, Günay K, Kolankaya N, Tanyolaç A (2001) Reaction kinetics for laccase-catalyzed polymerization of 1-naphthol. Bioresource Technol 80:29–36

    Article  Google Scholar 

  6. Ngwa EN, Kengne AP, Barbara TA, Mofo-Mato EP, Sobngwi E (2015) Access persistent organic pollutants as risk factors for type 2 diabetes. Diabetol Metab Syndr 7:41

    Article  Google Scholar 

  7. Deceuninck Y, Bichon E, Marchand P, Boquien CY, Legrand A, Boscher C, Antignac JP, Le BB (2015) Determination of bisphenol A and related substitutes/analogues in human breast milk using gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 407:2485–2497

    Article  CAS  Google Scholar 

  8. Deceuninck Y, Bichon E, Durand S, Bemrah N, Zendong Z, Morvan ML, Marchand P, Dervilly-Pinel G, Antignac JP, Leblanc JC (2014) Development and validation of a specific and sensitive gas chromatography tandem mass spectrometry method for the determination of bisphenol A residues in a large set of food items. J Chromatogr A 1362:241–249

    Article  CAS  Google Scholar 

  9. Berrin S, Suramya W, Zheng YX, Stephen MR (2003) Simultaneous determination of urinary 1-and 2-naphthols, 3-and 9-phenanthrols, and 1-pyrenol in coke oven workers. Biomarkers 8:93–109

    Article  Google Scholar 

  10. Zhou QX, Wang GQ, Xie GH (2014) Preconcentration and determination of bisphenol A, naphthol and dinitrophenol from environmental water samples by dispersive liquid-phase microextraction and HPLC. Anal Methods 6:187–193

    Article  CAS  Google Scholar 

  11. Zhang XF, Zhu D, Huang CP (2015) Sensitive detection of bisphenol A in complex samples by in-column molecularly imprinted solid-phase extraction coupled with capillary electrophoresis. Microchem J 121:1–5

    Article  CAS  Google Scholar 

  12. Lamalle C, Servais A, Régis PR, Crommen J, Fillet M (2015) Simultaneous determination of insulin and its analogues in pharmaceutical formulations by micellar electrokinetic chromatography. J Pharm Biomed Anal 111:344–350

    Article  CAS  Google Scholar 

  13. Ruokonen SK, Dusa F, Lokajova J et al (2015) Effect of ionic liquids on the interaction between liposomes and common wastewater pollutants investigated by capillary electrophoresis. J Chromatogr A 1405:178–187

    Article  CAS  Google Scholar 

  14. Li CP, Wang HL (2015) Selective enzymatic cleavage and labeling for sensitive capillary electrophoresis laser-induced fluorescence analysis of oxidized DNA bases. J Chromatogr A 1406:324–330

    Article  CAS  Google Scholar 

  15. Tascon M, Benavente F, Sanz-Nebot VM et al (2015) Fast determination of harmala alkaloids in edible algae by capillary electrophoresis mass spectrometry. Anal Bioanal Chem 407:3637–3645

    Article  CAS  Google Scholar 

  16. Sun HL, Wu YW (2013) Field-amplified sample injection for the determination of isonicotinamide and nicotinamide in whitening cosmetics and supplemented foodstuffs by MEKC. Anal Methods 5:5615–5621

    Article  CAS  Google Scholar 

  17. Wu YW, Liu JF, Xiao TX, Han DY, Zhang HL, Pan JC (2009) Field-amplified sample injection for the determination of albumin and transferring in human urines by MEKC. Electrophoresis 30:668–673

    Article  CAS  Google Scholar 

  18. Gallart-Ayala H, Núñez O, Moyano E, Galceran MT (2010) Field-amplified sample injection-micellar electrokinetic capillary chromatography for the analysis of bisphenol A, bisphenol F, and their diglycidyl ethers and derivatives in canned soft drinks. Electrophoresis 31:1550–1559

    Article  CAS  Google Scholar 

  19. Zhong SX, Tan SN, Ge LY, Wang WP, Chen JR (2011) Determination of bisphenol A and naphthols in river water samples by capillary zone electrophoresis after cloud point extraction. Talanta 85:488–492

    Article  CAS  Google Scholar 

  20. He Y, Li X, Tong P et al (2013) An online field-amplification sample stacking method for the determination of beta(2)-agonists in human urine by CE-ESI/MS. Talanta 104:97–102

    Article  CAS  Google Scholar 

  21. Xu YH, Gao Y, Wei H, Du Y, Wang EK (2006) Field-amplified sample stacking capillary electrophoresis with electrochemiluminescence applied to the determination of illicit drugs on banknotes. J Chromatogr A 1115:260–266

    Article  CAS  Google Scholar 

  22. Bernad JO, Damascelli A, Nunez O et al (2011) In-line preconcentration capillary zone electrophoresis for the analysis of haloacetic acids in water. Electrophoresis 32:2123–2130

    Article  CAS  Google Scholar 

  23. Yang YZ, Boysen RI, Milton TW, Hearn (2006) Optimization of field-amplified sample injection for analysis of peptides by capillary electrophoresis-mass spectrometry. Anal Chem 78:4752–4758

    Article  CAS  Google Scholar 

  24. Yan N, Zhou L, Zhu ZF et al (2009) Determination of melamine in dairy products, fish feed, and fish by capillary zone electrophoresis with diode array detection. J Agric Food Chem 57:807–811

    Article  CAS  Google Scholar 

  25. Quirino JP, Terabe S (2000) Sample stacking of cationic and anionic analytes in capillary electrophoresis. J Chromatogr A 902:119–135

    Article  CAS  Google Scholar 

  26. Zhou CH, Tong SS, Chang YX, Jia Q, Zhou WH (2012) Ionic liquid-based dispersive liquid-liquid microextraction with back-extraction coupled with capillary electrophoresis to determine phenolic compounds. Electrophoresis 33:1331–1338

    Article  CAS  Google Scholar 

  27. Li XH, Chu SG, Fu S, Ma LL, Liu XF, Xu XB (2005) Off-line concentration of bisphenol A and three alkylphenols by SPE then on-line concentration and rapid separation by reverse-migration micellar electrokinetic chromatography. Chromatographia 61:161–166

    Article  CAS  Google Scholar 

  28. Wu T, Wang WY, Jiang LM, Chu QC, Delaire J, Ye JN (2008) Determination of natural and synthetic endocrine-disrupting chemicals (EDCs) in sewage based on SPE and MEKC with amperometric detection. Chromatographia 68:339–344

    Article  CAS  Google Scholar 

  29. Tan ZJ, Li FF (2012) Cloud-point extraction and preconcentration of bisphenol A from water samples. J Cent South Univ 19:2136–2141

    Article  CAS  Google Scholar 

  30. Mohana Krishna RM, Rajeev J et al (2011) Application of ethyl chloroformate derivatization for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol-A in water and milk samples. Anal Bioanal Chem 401:1695–1701

    Article  Google Scholar 

Download references

Acknowledgments

This project was financially supported by National Nature Science Foundation of China (No. 20975031), Education Committee of Hubei Province (D20132501), Hubei Key Laboratory of Pollutant Analysis and Reuse Technique (Hubei Normal University) (KL2013M06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwei Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, X., Wang, H., Yang, B. et al. Field-Amplified Sample Injection-Capillary Electrophoresis for the Determination of Bisphenol A, α-Naphthol and β-Naphthol in Drinks and Lake Water. Chromatographia 79, 327–333 (2016). https://doi.org/10.1007/s10337-016-3028-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-016-3028-x

Keywords

Navigation