Skip to main content
Log in

Fast Analysis of Synthetic Pyrethroid Metabolites in Water Samples Using In-Syringe Derivatization Coupled Hollow Fiber Mediated Liquid Phase Microextraction with GC-ECD

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A fast and efficient method has been demonstrated for the trace determination of six important metabolites of synthetic pyrethroids including cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis- and trans-Cl2CA), cis-3-(2,2-dibromovinyl)-2,2-dimethylcyclopropane-1-carboxylic acid (cis-Br2CA), 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA), 3-phenoxybenzoic acid (3-PBA), and 2-phenoxybenzoic acid (2-PBA) in environmental water samples using hollow fiber (HF)-mediated liquid-phase microextraction (LPME) coupled with in-syringe derivatization (ISD) followed by gas chromatography (GC) with electron capture detector (ECD) analysis. This method utilizes a HF membrane segment impregnated with extraction solvent as the LPME sampling probe, which was connected to a microsyringe pre-filled with derivatizing agents, and it was immersed into sample solution for extraction. After extraction, the extracting solution was subjected to derivatization reaction that was performed inside the syringe barrel followed by GC-ECD analysis. Under optimal conditions, the best extraction efficiency was obtained using sampling probe (2.0 cm hollow fiber) impregnated with 1-octanol immersed into water sample (5.0 mL, adjusted pH below 1.0) and stirring (1,250 rpm) for 10 min at 70 °C and diisopropylcarbodiimide (2 μL) and 1,1,1,3,3,3-hexafluoro-2-propanol (1 μL) were the derivatizing agents used. The detection limits of 3 ng mL−1 for cis- and trans-Cl2CA, 2 ng mL−1 for cis-Br2CA, 6 ng mL−1 for 4-F-3-PBA, and 0.6 ng mL−1 for 3-PBA and 2-PBA. The method showed good linearity (R 2 = 0.973−0.998), repeatability from 4.0 to 13 % (n = 5), recovery from 79.2 to 95.7 %, and enrichment factors ranged between 109 and 159 for target analytes spiked in water samples. The proposed method and conventional methods were compared. Results suggested that the proposed HF-LPME-ISD/GC-ECD method was a rapid, simple, inexpensive, and eco-friendly technique for the analysis of metabolites of pyrethroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Casida JE, Gammon DW, Glickman AH, Lawrence LJ (1983) Annu Rev Pharmacol Toxicol 23:413–438

    Article  CAS  Google Scholar 

  2. Katagi T (2012) Top Curr Chem 314:167–202

    Article  CAS  Google Scholar 

  3. Chester G, Hatfield LD, Hart TB, Leppert BC, Swaine H, Tummon OJ (1987) Arch Environ Contam Toxicol 16:69–78

    Article  CAS  Google Scholar 

  4. Aprea C, Stridori A, Sciarra G (1997) J Chromatogr B Biomed Sci Appl 695:227–236

    Article  CAS  Google Scholar 

  5. Feo ML, Eljarrat E, Barceló D (2011) Rapid Commun Mass Spectrom 25:869–876

    Article  CAS  Google Scholar 

  6. Leng G, Gries W (2005) J Chromatogr B Analyt Technol Biomed Life Sci 814(2):285–294

    Article  CAS  Google Scholar 

  7. Loper BL, Anderson KA (2003) J AOAC Int 86(6):1236–1240

    CAS  Google Scholar 

  8. León-González ME, Plaza-Arroyo M, Pérez-Arribas LV, Polo-Díez LM (2005) Anal Bioanal Chem 382:527–531

    Article  Google Scholar 

  9. Schettgen T, Koch HM, Drexler H, Angerer J (2002) J Chromatogr B 778:121–130

    Article  CAS  Google Scholar 

  10. Woollen BH, Marsh JR, Laird WJ, Lesser JE (1992) Xenobiotica 22:983–991

    Article  CAS  Google Scholar 

  11. Albaseer SS, Rao RN, Swamy YV, Mukkanti K (2010) J Chromatogr A 1217:5537–5554

    Article  CAS  Google Scholar 

  12. Hladik ML, Kuivila KM (2009) J Agric Food Chem 57:9079–9085

    Article  CAS  Google Scholar 

  13. Domingues V, Alves A, Cabral M, Delerue-Matos C (2005) J Chromatogr A 1069:127–132

    Article  CAS  Google Scholar 

  14. Li HP, Lin CH, Jen JF (2009) Talanta 79:466–471

    Article  CAS  Google Scholar 

  15. Liu W, Gan JJ (2004) J Agric Food Chem 52:755–761

    Article  CAS  Google Scholar 

  16. Bondarenko S, Spurlock F, Gan J (2007) Environ Toxicol Chem 26:2587–2593

    Article  CAS  Google Scholar 

  17. Hunter W, Yang Y, Reichenberg F, Mayer P, Gan J (2009) Environ Toxicol Chem 28:36–43

    Article  CAS  Google Scholar 

  18. Basheer C, Balasubramanian R, Lee HK (2003) J Chromatogr A 1016:11–20

    Article  CAS  Google Scholar 

  19. Wang Y, Kwok YC, He Y, Lee HK (1998) Anal Chem 70:4610–4614

    Article  CAS  Google Scholar 

  20. Hyötyläinen T, Tuutijärvi T, Kuosmanen K, Riekkola ML (2002) Anal Bioanal Chem 372:732–736

    Article  Google Scholar 

  21. De Jong J, Lammertink RG, Wessling M (2006) Lab Chip 6:1125–1139

    Article  Google Scholar 

  22. Kawaguchi M, Ito R, Endo N, Okanouchi N, Sakui N, Saito K, Nakazawa H (2006) J Chromatogr A 1110:1–5

    Article  CAS  Google Scholar 

  23. Basheer C, Lee HK (2004) J Chromatogr A 1057:163–169

    Article  CAS  Google Scholar 

  24. Chia KJ, Huang SD (2006) J Chromatogr A 1103:158–161

    Article  CAS  Google Scholar 

  25. Zhang J, Lee HK (2006) J Chromatogr A 1117:31–37

    Article  CAS  Google Scholar 

  26. Yan H, Liu B, Du J, Yang G, Row KH (2010) J Chromatogr A 1217:5152–5157

    Article  CAS  Google Scholar 

  27. Wang X, Luo L, Ouyang G, Lin L, Tam NF, Lan C, Luan T (2009) J Chromatogr A 1216:6267–6273

    Article  CAS  Google Scholar 

  28. Ito R, Kawaguchi M, Koganei Y, Honda H, Okanouchi N, Sakui N, Saito K, Nakazawa H (2009) Anal Sci 25:1033–1037

    Article  CAS  Google Scholar 

  29. Angerer J, Ritter A (1997) J Chromatogr B Biomed Sci Appl 695:217–226

    Article  CAS  Google Scholar 

  30. Lin CH, Yan CT, Kumar PV, Li HP, Jen JF (2011) Anal Bioanal Chem 401:927–937

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful for financial supports from the National Science Council of Taiwan under the Grant number NSC 94-2113-M-005-002 and the Council of Agriculture (COA) in Taiwan under the Grant number 90AS-1.2.2-PI-P2(3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jen-Fon Jen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CH., Ponnusamy, V.K., Li, HP. et al. Fast Analysis of Synthetic Pyrethroid Metabolites in Water Samples Using In-Syringe Derivatization Coupled Hollow Fiber Mediated Liquid Phase Microextraction with GC-ECD. Chromatographia 76, 75–83 (2013). https://doi.org/10.1007/s10337-012-2360-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2360-z

Keywords

Navigation