Skip to main content
Log in

Analysis of Reducing Carbohydrates and Fructosyl Saccharides in Maple Syrup and Maple Sugar by CE

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Reducing carbohydrates in maple syrup and maple sugar were separated by capillary electrophoresis using derivatization with 1-phenyl-3-methyl-5-pyrazolone (PMP) and the characteristics of these samples were studied. Reducing carbohydrate standards including nine monosaccharides and five disaccharides as PMP derivatives could be easily resolved by using 200 mM borate buffer (pH 10.5) as a background electrolyte. Glucose was the most abundant reducing sugar in both maple samples, and mannose was abundant relative to the other sugars. The other monosaccharides (xylose, arabinose, ribose, galactose and N-acetylglucosamine) were also detected. When maple syrup and maple sugar were treated with invertase, which removed fructose residues from the reducing ends of fructosyl saccharides, melibiose was detected, suggesting that raffinose exists in both samples. The differences of carbohydrate contents between maple syrup and maple sugar were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BGE:

Background electrolyte

PMP:

1-Phenyl-3-methyl-5-pyrazolone

Lac:

Lactose

Mal:

Maltose

Gen:

Gentiobiose

Mel:

Melibiose

Cel:

Cellobiose

Gal:

Galactose

Man:

Mannose

Glc:

Glucose

Rib:

Ribose

Lyx:

Lyxose

Xyl:

Xylose

Ara:

Arabinose

GalNAc:

N-Acetylgalactosamine

GlcNAc:

N-Acetylglucosamine

LC:

Liquid chromatography

GC:

Gas chromatography

ESI:

Electrospray ionization

MS:

Mass spectrometry

UV:

Ultraviolet

r :

Correlation coefficient

RSD:

Relative standard deviation

S/N:

Signal to noise ratio

LOD:

Limit of detection

CE:

Capillary electrophoresis

CZE:

Capillary zone electrophoresis

MEKC:

Micellar electrokinetic chromatography

IEKC:

Ion exchange electrokinetic chromatography

CEC:

Capillary electrochromatography

ACE:

Affinity capillary electrophoresis

References

  1. Medeiros PM, Conte MH, Weber JC, Simoneit BRT (2006) Sugars as source indicators of biogenic organic carbon in aerosols collected above the Howland Experimental Forest, Maine. Atmos Environ 40:1694–1705

    Article  CAS  Google Scholar 

  2. Slavin JL (2005) Dietary fiber and body weight. Nutrition 21:411–418

    Article  Google Scholar 

  3. Brooks SPJ, Mongeau R, Deeks JR, Lampi BJ, Brassard R (2006) Dietary fiber in baby foods of major brands sold in Canada. J Food Compos Anal 19:59–66

    Article  CAS  Google Scholar 

  4. Rawitscher M, Mayer J (1979) Sugar: an expensive source of calories. Food Policy 4:138–139

    Article  Google Scholar 

  5. Poget SF, Legge GB, Proctor MR, Jonathan P, Butler G, Bycroft M, Williams RL (1999) The structure of tunicate C-type lectin from Polyandrocarpa misakiensis complexed with d-galactose. J Mol Biol 290:867–879

    Article  CAS  Google Scholar 

  6. Tanaka N, Awai A, Bhuiyan MSA, Fujita K, Fukui H, Takegawa K (1999) Cell surface galactosylation is essential for nonsexual flocculation in Schizosaccharomyces pombe. J Bacteriol 181:1356–1359

    CAS  Google Scholar 

  7. Zajonc DM, Savage PB, Bendelac A, Wilson IA, Teyton L (2008) Crystal structures of mouse CD1d-iGb3 complex and its cognate Vα14 T cell receptor suggest a model for dual recognition of foreign and self glycolipids. J Mol Biol 377:1104–1116

    Article  CAS  Google Scholar 

  8. Nyholm P-G, Pascher I (1993) Steric presentation and recognition of the saccharide chains of glycolipids at the cell surface: favoured conformations of the saccharide-lipid linkage calculated using molecular mechanics (MM3). Int J Biol Macromol 15:43–51

    Article  CAS  Google Scholar 

  9. Baumann H, Doyle D (1980) Metabolic fate of cell surface glycoproteins during immunoglobulin-induced internalization. Cell 21:897–907

    Article  CAS  Google Scholar 

  10. Bozzaro S (1985) Cell surface carbohydrates and cell recognition in Dictyostelium. Cell Differ 17:67–82

    Article  CAS  Google Scholar 

  11. Yeh S-L, Lin M-S, Chen H-L (2010) Partial hydrolysis enhances the inhibitory effects of konjac glucomannan from Amorphophallus konjac C. Koch on DNA damage induced by fecal water in Caco-2 cells. Food Chem 119:614–618

    Article  CAS  Google Scholar 

  12. Imahori Y, Kitamura N, Kobayashi S, Takihara T, Ose K, Ueda Y (2010) Changes in fructooligosaccharide composition and related enzyme activities burdock root during low-temperature storage. Postharvest Biol Technol 55:15–20

    Article  CAS  Google Scholar 

  13. Wang X, Chen XH, Yang XY, Geng MY, Wang LM (2007) Acidic oligosaccharide sugar chain, a marine-derived oligosaccharide, activates human glial cell line-derived neurotrophic factor signaling. Neurosci Lett 417:176–180

    Article  CAS  Google Scholar 

  14. Martínez-Villaluenga C, Fías J, Gulewicz P, Gulewicz K, Vidal-Valverde C (2008) Food safety evaluation of broccoli and radish sprouts. Food Chem Toxicol 46:1635–1644

    Article  Google Scholar 

  15. Nasi A, Picariello G, Ferranti P (2009) Proteomic approaches to study structure, functions and toxicity of legume seeds lectins. Perspectives for the assessment of food quality and safety. J Proteomics 72:527–538

    Article  CAS  Google Scholar 

  16. Lynch BC, Tischler AS, Capen C, Munro IC, McGirr LM, McClain MR (1996) Low digestible carbohydrates (polyols and lactose): significance of adrenal medullary proliferative lesions in the rat. Regul Toxicol Pharmacol 23:256–297

    Article  CAS  Google Scholar 

  17. Engel K-H, Blaas WK, Gabriel B, Beckman M (1996) Modern biotechnology in plant breeding: analysis of glycoalkaloids in transgenic potatoes. ACS Symp Ser 637:249–260

    Article  CAS  Google Scholar 

  18. Adachi S (1965) Thin-layer chromatography of carbohydrates in the presence of bisulfate. J Chromatogr 17:295–299

    Article  CAS  Google Scholar 

  19. Sakho M, Chassagne D, Crouzet J (1997) African mango glycosidically bound volatile compounds. J Agric Food Chem 45:883–888

    Article  CAS  Google Scholar 

  20. Gunata Z, Blondeel C, Valuer MJ, Lepoutre JP, Sapis JC, Watanabe N (1998) An endoglycosidase from Grape berry skin of Cv. M. Alexandria hydrolyzing potentially aromatic disaccharide glycosides. J Agric Food Chem 46:2748–2753

    Article  Google Scholar 

  21. Reiffová K, Nemcová R (2006) Thin-layer chromatography analysis of fructooligosaccharides in biological samples. J Chromatogr A 1110:214–221

    Article  Google Scholar 

  22. Honda S, Yamauchi N, Kakehi K (1979) Rapid gas chromatographic analysis of aldoses as their diethyl dithioacetal trimethylsilylates. J Chromatogr 169:287–293

    Article  CAS  Google Scholar 

  23. Honda S, Nagata M, Kakehi K (1981) Rapid gas chromatographic of partially methylated aldoses as trimethylsilylated diethyl dithioacetals. J Chromatogr 209:299–305

    Article  CAS  Google Scholar 

  24. Kaine LA, Wolnik KA (1998) Detection of counterfeit and relabled infant formulas by high-pH anion-exchange chromatography-pulsed amperometric detection for the determination of sugar profiles. J Chromatogr A 804:279–287

    Article  CAS  Google Scholar 

  25. Corradini C, Bianchi F, Matteuzzi D, Amoretti A, Rossi M, Zanoni S (2004) High-performance anion-exchange chromatography coupled with pulsed amperometric detection and capillary zone electrophoresis with indirect ultra violet detection as powerful tools to evaluate prebiotic properties of fructooligosaccharides and inulin. J Chromatogr A 1054:165–173

    CAS  Google Scholar 

  26. Zhang Z, Linhardt RJ (2009) Sequence analysis of native oligosaccharides using negative ESI tandem MS. Curr Anal Chem 5:225–237

    Article  CAS  Google Scholar 

  27. Solakyildirim K, Zhang Z, Linhardt RJ (2010) Ultraperformance liquid chromatography with electrospray ionization ion trap mass spectrometry for chondroitin disaccharide analysis. Anal Biochem 397:24–28

    Article  CAS  Google Scholar 

  28. Zhang X, Cao Y, Ye J (2001) Determination of lactose in sugar-free milk powder by capillary electrophoresis with electrochemical detection. Food Chem 72:385–388

    Article  CAS  Google Scholar 

  29. Cao Y, Wang Y, Chen X, Ye J (2004) Study on sugar profile of rice during ageing by capillary electrophoresis with electrochemical detection. Food Chem 86:131–136

    Article  CAS  Google Scholar 

  30. Zemann AJ (1997) Sub-minute separations of organic and inorganic anions with co-electroosmotic capillary electrophoresis. J Chromatogr A 787:243–251

    Article  CAS  Google Scholar 

  31. Sanz ML, Martínez-Castro I (2007) Recent developments in sample preparation for chromatographic analysis of carbohydrates. J Chromatogr A 1153:74–89

    Article  CAS  Google Scholar 

  32. Hichcock AM, Bowman MJ, Staples GO, Zaia J (2008) Improved workup for glycosaminoglycan disaccharide analysis using CE with LIF detection. Electrophoresis 29:4538–4548

    Article  Google Scholar 

  33. Tseng HM, Gattolin S, Pritchard J, Newbury HJ, Barrett DA (2009) Analysis of mono-, di-, and oligosaccharides by CE using a two-stage derivatization method and LIF detection. Electrophoresis 30:1399–1405

    Article  CAS  Google Scholar 

  34. Honda S, Okeda J, Iwanaga H, Kawakami S, Taga A, Suzuki S, Imai K (2000) Ultramicroanalysis od reducing carbohydrates by capillary electrophoresis with laser-induced fluorescence detection as 7-nitro-2,3,1-benzoxadiazole-tagged N-methylglycamine derivatives. Anal Biochem 286:99–111

    Article  CAS  Google Scholar 

  35. Honda S, Iwase S, Makino A, Fujiwara S (1989) Simultaneous determination of reducing monosaccharides by capillary zone electrophoresis as the borate complex of N-2-pyridylglycamines. Anal Biochem 176:72–77

    Article  CAS  Google Scholar 

  36. Honda S, Suzuki S, Nose A, Yamamoto K, Kakehi K (1991) Capillary zone electrophoresis of reducing mono- and oligo-saccharides as the borate complexes of their 3-methyl-1-phenyl-2-pyrazoline-5-one derivatives. Carbohydr Res 215:193–198

    Article  CAS  Google Scholar 

  37. Chen J, He L, Abo M, Zhang J, Sato K, Okuno A (2009) Influence of borate complexation on the electrophoretic behavior of 2-AA derivatized saccharides in capillary electrophoresis. Carbohydr Res 344:1141–1145

    Article  CAS  Google Scholar 

  38. Taga A, Suzuki S, Honda S (2001) Capillary electrophoretic analysis of carbohydrates derivatized by in-capillary derivatization with 1-phenyl-3-methyl-5-pyrazolone. J Chromatogr A 911:259–267

    Article  CAS  Google Scholar 

  39. Stinson EE, Dooley CJ, Purcell JM, Ard IS (1967) Quebrachitol—a new component of maple sap and syrup. J Agric Food Chem 15:394–397

    Article  CAS  Google Scholar 

  40. Stuckel JG, Low NH (1996) The chemical composition of 80 pure maple syrup samples produced in North America. Food Res Int 29:373–379

    Article  CAS  Google Scholar 

  41. Martin GG, Martin Y-L, Naulet N, McManns HJD (1996) Application of 2H SNIF-NMR and 13C SIR-MS analyses to maple syrup: detection of added sugars. J Agric Food Chem 44:3206–3213

    Article  CAS  Google Scholar 

  42. Paradkar MM, Sakhamuri S, Irudayaraj J (2002) Comparison of FTIR, FT-Raman, and NIR spectroscopy in a maple syrup adulteration study. J Food Sci 67:2009–2015

    Article  CAS  Google Scholar 

  43. Honda S, Akao E, Suzuki S, Okuda M, Kakehi K, Nakamura J (1989) High-performance liquid chromatography of reducing carbohydrates as strongly ultraviolet-absorbing and electrochemically sensitive 1-phenyl-3-methyl-5-pyrazolone derivatives. Anal Biochem 180:351–357

    Article  CAS  Google Scholar 

  44. Sharma ML, Newbrun E (1973) Continuous spectrophotometric assay of glucosyltransferase and β-fructofuranosidase activity. Carbohydr Res 29:165–172

    Article  CAS  Google Scholar 

  45. Villaluenga CM, Frías J, Gómez R, Valverde CV (2006) Influence of addition of raffinose family oligosaccharides on probiotic survival in fermented milk during refrigerated storage. Int Dairy J 16:768–774

    Article  Google Scholar 

  46. Toyota S, Fukushi Y, Katoh S, Orikasa S, Suzuki Y (1989) Anti-bacterial defence mechanism of the urinary bladder: role of mannose in urine. Jpn J Urol 80:1816–1823

    CAS  Google Scholar 

  47. Pätzold R, Brückner H (2005) Mass spectrometric detection and formation of d-amino acids in processed plant saps, syrups, and fruit juice concentrates. J Agric Food Chem 53:9722–9729

    Article  Google Scholar 

  48. Chiesa C, Oefner PJ, Zieske LR, O’Neill RA (1995) Micellar electrokinetic chromatography of monosaccharides derivatized with 1-phenyl-3-methyl-2-pyrazoline-5-one. J Capill Electrophor 2:175–183

    CAS  Google Scholar 

  49. Honda S, Togashi K, Uegaki K, Taga A (1998) Enhancement of the zone electrophoretic separation of 1-phenyl-3-methyl-5-pyrazolone derivatives of aldoses as borate complexes by concerted ion-interaction electrokinetic chromatography with Polybrene. J Chromatogr A 805:277–284

    Article  CAS  Google Scholar 

  50. Suzuki S, Yamamoto M, Kuwahara Y, Makiura K, Honda S (1998) Separation of 1-phenyl-3-methyl-5-pyrazolone derivatives of monosaccharides by capillary chromatography. Electrophoresis 19:2682–2688

    Article  CAS  Google Scholar 

  51. Guček M, Pihlar B (2000) Capillary electrochromatography of 1-phenyl-3-methyl-5-pyrazolone derivatives of some mono- and disaccharides. Chromatographia 51:S139–S142

    Article  Google Scholar 

  52. Taga A, Yabisako Y, Kitano A, Honda S (1998) Separation of disaccharides by affinity capillary electrophoresis in lectin-containing electrophoretic solutions. Electrophoresis 19:2645–2649

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Taga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taga, A., Kodama, S. Analysis of Reducing Carbohydrates and Fructosyl Saccharides in Maple Syrup and Maple Sugar by CE. Chromatographia 75, 1009–1016 (2012). https://doi.org/10.1007/s10337-012-2199-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-012-2199-3

Keywords

Navigation