Skip to main content
Log in

Comparisons of Microwave-Assisted Extraction, Simultaneous Distillation-Solvent Extraction, Soxhlet Extraction and Ultrasound Probe for Polycyclic Musks in Sediments: Recovery, Repeatability, Matrix Effects and Bioavailability

  • Full Short Communication
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The extraction method of pharmaceutical and personal care products (PPCPs) has become a popular issue due to the emergence of PPCPs as contaminants. In this work, polycyclic musks, a typical type of PPCPs, were selected to test various techniques including microwave-assisted extraction (MAE), simultaneous distillation-solvent extraction (SDSE), Soxhlet extraction (SE), and ultrasound probe (UP). MAE and UP proved to be more effective pretreatment techniques than SE and SDSE, with high recovery, repeatability, accuracy, efficiency, little solvent consumption, and acceptable matrix effects. Notably, the chemical methods usually did not work well for the determination of bioavailability and the environmental fate of pollutants was overestimated. In this work, wheat (Triticum aestivum L.) was used as the ecological receptor to evaluate the bioavailability of chemical pollutants. The concentrations of polycyclic musks in sediments by way of UP extraction had a significant correlation (R 2 > 0.9, P < 0.01) with the concentrations in roots of wheat and the changes of chlorophyll, malondialdehyde and peroxidase in leaves of wheat. These changes suggest that the concentrations of polycyclic musks in sediments using UP extraction were comparable with the level of those in vivo. Through this work, it was discovered that using UP with a different solvent was suitable for determining total concentrations and the bioavailable fractions in sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Hu XG, Luo Y, Zhou QX (2010) Chromatographia 71:217–223

    Article  CAS  Google Scholar 

  2. Ort C, Lawrence MG, Rieckermann J, Joss A (2010) Environ Sci Technol 44:6024–6035

    Article  CAS  Google Scholar 

  3. Shek WM, Murphy MB, Lam GCW, Lam PKS (2008) Chemosphere 71:1241–1250

    Article  CAS  Google Scholar 

  4. Hu XG, Zhou QX, Luo Y (2010) Environ Pollut 158:2992–2998

    Article  CAS  Google Scholar 

  5. Chen XJ, Bester K (2009) Anal Bioanal Chem 395:1877–1884

    Article  CAS  Google Scholar 

  6. Zhou QX, Wang ME (2010) J Soil Sediment 10:1324–1334

    Article  CAS  Google Scholar 

  7. Li YN, Zhou QX, Wang YY, Xie XJ (2011) Chemosphere 82:204–209

    Article  CAS  Google Scholar 

  8. Wu SF, Ding WH (2010) J Chromatogr A 1217:2776–2781

    Article  CAS  Google Scholar 

  9. de Vallejuelo SFO, Barrena A, Arana G, de Diego A, Madariaga JM (2009) Talanta 80:434–439

    Article  Google Scholar 

  10. Ellis J, Shah M, Kubachka KM, Kevin M, Caruso JA (2007) J Environ Monitor 9:1329–1336

    Article  CAS  Google Scholar 

  11. Wang YC, Ding WH (2009) J Chromatogr A 1216:6858–6863

    Article  CAS  Google Scholar 

  12. Li Y, Pang T, Guo ZM, Li YL, Wang XL, Deng JH, Zhong KJ, Lu X, Xu GW (2010) Talanta 81:650–656

    Article  CAS  Google Scholar 

  13. Nogueirol RC, Alleoni LR, Nachtigall GR, de Melo GW (2010) J Hazard Mater 181:931–937

    Article  CAS  Google Scholar 

  14. Khan MA, Stroud JL, Zhu YG, McGrath SP, Zhao FJ (2010) Environ Sci Technol 44:8515–8521

    Article  CAS  Google Scholar 

  15. Förstner U, Westrich B (2005) J Soil Sediment 5:134–138

    Article  Google Scholar 

  16. Zhou QX, Wang ME, Liang JD (2008) Appl Soil Ecol 40:138–145

    Article  Google Scholar 

  17. Li YN, Zhou QX, Li FX, Liu XL, Luo Y (2008) Chemosphere 74:119–124

    Article  CAS  Google Scholar 

  18. Semple KT, Doick KJ, Wick LY, Harms H (2007) Environ Pollut 150:166–176

    Article  CAS  Google Scholar 

  19. Beesley L, Moreno-Jimenez E, Gomez-Eyles JL (2010) Environ Pollut 158:2282–2287

    Article  CAS  Google Scholar 

  20. Liu H, Weisman HD, Ye YB, Cui B, Huang YH, Colon-Carmona A, Wang ZH (2009) Plant Sci 176:375–382

    Article  CAS  Google Scholar 

  21. Matuszewski BK, Constanzer ML, Chavez-Eng CH (2003) Anal Chem 75:3019–3030

    Article  CAS  Google Scholar 

  22. Diaz-Cruz MS, Garcia-Galan MJ, Guerra P, Jelic A, Postigo C, Eljarrat E, Farre M, de Alda MJL, Petrovic M, Barcelo D (2009) Trend Anal Chem 28:1263–1275

    Article  CAS  Google Scholar 

  23. Madej K (2009). Trend Anal Chem 28:436–446

    Article  CAS  Google Scholar 

  24. Martin J, Santos JL, Aparicio I, Alonso E (2010) J Sep Sci 33:1760–1766

    Article  CAS  Google Scholar 

  25. Risdon GC, Pollard SJT, Brassington KJ, McEwan JN, Jamie N, Paton GI, Semple KT, Coulon F (2008) Anal Chem 80:7090–7096

    Article  CAS  Google Scholar 

  26. Melecchi MIS, Peres VF, Dariva C, Zini CA, Abad FC, Martinez MM (2006) Ultrason Sonochem 13:242–250

    Article  CAS  Google Scholar 

  27. Difrancesco AM, Chiu PC, Standley LJ, Allen HE, Salvito DT (2004) Environ Sci Technol 38:194–201

    Article  CAS  Google Scholar 

  28. Itoh N, Numata M, Aoyagi Y, Yarita T (2008) Anal Chim Acta 612:44–52

    Article  CAS  Google Scholar 

  29. Tzoupanos ND, Zouboulis AI, Zhao YC (2008) Chemosphere 73:729–736

    Article  CAS  Google Scholar 

  30. Jasid S, Simontacchi M, Bartoli CG, Puntarulo S (2006) Plant Physiol 142:1246–1255

    Article  CAS  Google Scholar 

  31. Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, VanLaere A, Vangronsveld J (2005) Plant Physiol Biochem 43:437–444

    Article  CAS  Google Scholar 

  32. Zhou YH, Zhang YY, Zhao X, Yu HJ, Shi K, Yu JQ (2009) J Agr Food Chem 57:5494–5500

    Article  CAS  Google Scholar 

  33. Kubatova A, Jansen B, Vaudoisot JF, Hawthorne SB (2002) J Chromatogr A 975:175–188

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Tianjin Committee of Science and Technology as a special innovative project (08FDZDSF03402) and by the National Natural Science Foundation of China as key project (21037002). The authors also acknowledge China Scholarship Council for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Zhou, Q. Comparisons of Microwave-Assisted Extraction, Simultaneous Distillation-Solvent Extraction, Soxhlet Extraction and Ultrasound Probe for Polycyclic Musks in Sediments: Recovery, Repeatability, Matrix Effects and Bioavailability. Chromatographia 74, 489–495 (2011). https://doi.org/10.1007/s10337-011-2084-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-2084-5

Keywords

Navigation