Skip to main content
Log in

Synthesis and Application of High Selective Monolithic Fibers Based on Molecularly Imprinted Polymer for SPME of Trace Methamphetamine

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

A monolithic solid-phase microextraction (SPME) fiber was fabricated based on a molecularly imprinted polymer which could be coupled with gas chromatography for extraction, pre-concentration and determination of methamphetamine (MAMP). Methacrylic acid, ethylene glycol dimethacrylate and MAMP play the roles of functional monomer, cross-linker and template, respectively. The effective factors influencing the polymerization and extraction procedures were investigated and will be detailed here. The fabricated fiber was firm, inexpensive, stable, selective and durable which gives it vital importance in SPME. Selectivity of the fabricated fiber in relation to the template in solution containing MAMP, related and unrelated compounds was also investigated. Under the optimum conditions, the calibration plot was linear in the range of 50–3,500 ng mL−1 (r 2 = 0.997). The high extraction efficiency was obtained for MAMP giving a detection limit of 14 ng mL−1. The fabricated fiber was successfully applied to SPME of MAMP from human saliva samples followed by gas chromatography-flame ionization detector analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bar AM, Panenka WJ, MacEwan W, Thornton AE, Lang DJ, Honer WG, Lecomte T (2006) J Psychiatry Neurosci 31:301–313

    Google Scholar 

  2. Kraemer T, Maurer HH (1998) J Chromatogr B 713:163–187

    Article  CAS  Google Scholar 

  3. Pichini S, Pacifici R, Pellegrini M, Marchei E, Lozano J, Nurillo J, Vall O, Garcia-Algar O (2004) Anal Chem 76:2124–2132

    Article  CAS  Google Scholar 

  4. Hendrickson HP, Milesi-Halle A, Laurenzana EM, Owens SM (2004) J Chromatogr B 806:81–87

    Article  CAS  Google Scholar 

  5. Moeller MR, Steinmeyer S, Kraemer T (1998) J Chromatogr B 713:91–109

    Article  CAS  Google Scholar 

  6. González-Marino I, Quintana JB, Rodríguez I, Rodil R, González-Penas J, Cela R (2009) J Chromatogr A 1216:8435–8441

    Article  Google Scholar 

  7. Myung SW, Min HK, Kim S, Kim M, Cho JB, Kim TJ (1998) J Chromatogr B 716:359–365

    Article  Google Scholar 

  8. Ugland HG, Krogh M, Rasmussen KE (1997) J Chromatogr B 701:29–38

    Article  CAS  Google Scholar 

  9. Raikos N, Christopoulou K, Theodoridis G, Tsoukali H, Psaroulis D (2003) J Chromatogr B 789:59–63

    Article  CAS  Google Scholar 

  10. Yashiki M, Kojima T, Miyazaki T, Nagasawa N, Iwasaki Y, Hara K (1995) Forensic Sci Int 76:169–177

    Article  CAS  Google Scholar 

  11. Lord HL, Pawliszyn J (1997) Anal Chem 69:3899–3906

    Article  CAS  Google Scholar 

  12. Chia KJ, Huang SD (2005) Anal Chim Acta 539:49–54

    Article  CAS  Google Scholar 

  13. Fan Y, Feng Y, Zhang J, Da S, Zhang M (2005) J Chromatogr A 1074:9–16

    Article  CAS  Google Scholar 

  14. Cormack PAG, Elorza AZ (2004) J Chromatogr B 804:173–182

    Article  CAS  Google Scholar 

  15. Andrade R, Reyes FGR, Rath S (2005) Food Chem 91:173–179

    Article  CAS  Google Scholar 

  16. Zhou F, Li X, Zeng Z (2005) Anal Chim Acta 538:63–70

    Article  CAS  Google Scholar 

  17. Djozan Dj, Pournaghi-Azar MH, Bahar S (2004) Chromatographia 59:595–599

    Article  CAS  Google Scholar 

  18. Djozan Dj, Assadi Y (2001) Anal Chem 73:4054–4058

    Article  CAS  Google Scholar 

  19. Gierak A, Seredych M, Bartnicki A (2006) Talanta 69:1079–1087

    Article  CAS  Google Scholar 

  20. Jiang R, Zhu F, Luan T, Tong Y, Liu H, Ouyang G, Pawliszyn J (2009) J Chromatogr A 1216:4641–4647

    Article  CAS  Google Scholar 

  21. Mohammadi A, Yamini Y, Alizadeh N (2005) J Chromatogr A 1063:1–8

    Article  CAS  Google Scholar 

  22. Mullet WM, Martin P, Pawliszyn J (2001) Anal Chem 73:2383–2389

    Article  Google Scholar 

  23. Djozan Dj, Baheri T (2007) J Chromatogr A 1166:16–23

    Article  CAS  Google Scholar 

  24. Djozan Dj, Baheri T, Pournaghi Azar MH, Mahkam M (2007) Mater Manuf Process 22:758–763

    Article  CAS  Google Scholar 

  25. Djozan Dj, Ebrahimi B (2008) Anal Chim Acta 616:152–159

    Article  CAS  Google Scholar 

  26. Sellergren B (2003) Techniques and instrumentation in analytical chemistry, vol 23. Elsevier, Amsterdam

  27. Qi J, Li X, Li Y, Zhu J, Qiang L (2008) Chem Eng China 2:109–115

    Article  CAS  Google Scholar 

  28. Cháfer-Pericás C, Campíns-Falcó P, Herráez-Hernández R (2004) Anal Biochem 333:328–335

    Article  Google Scholar 

  29. Huang Z, Zhang S (2003) J Chromatogr B 792:241–247

    Article  CAS  Google Scholar 

  30. Kudo K, Ishida T, Hara K, Kashimura S, Tsuji A, Ikeda N (2007) J Chromatogr B 855:115–120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Research Office at the University of Tabriz for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djavanshir Djozan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djozan, D., Farajzadeh, M.A., Sorouraddin, S.M. et al. Synthesis and Application of High Selective Monolithic Fibers Based on Molecularly Imprinted Polymer for SPME of Trace Methamphetamine. Chromatographia 73, 975–983 (2011). https://doi.org/10.1007/s10337-011-1984-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-1984-8

Keywords

Navigation