Skip to main content

Advertisement

Log in

The impact of wind energy facilities on grouse: a systematic review

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

There is increasing concern about the impact of the current boom in wind energy facilities (WEF) and associated infrastructure on wildlife. However, the direct and indirect effects of these facilities on the mortality, occurrence and behaviour of rare and threatened species are poorly understood. We conducted a literature review to examine the potential impacts of WEF on grouse species. We studied whether grouse (1) collide with wind turbines, (2) show behavioural responses in relation to wind turbine developments, and (3) if there are documented effects of WEF on their population sizes or dynamics. Our review is based on 35 sources, including peer-reviewed articles as well as grey literature. Effects of wind turbine facilities on grouse have been studied for eight species. Five grouse species have been found to collide with wind turbines, in particular with the towers. Fifteen studies reported behavioural responses in relation to wind turbine facilities in grouse (seven species), including spatial avoidance, displacement of lekking or nesting sites, or the time invested in breeding vs. non-breeding behaviour. Grouse were affected at up to distances of 500 m by WEF infrastructure, with indications of effects also at bigger distances. In six cases, a local reduction in grouse abundance was reported in areas with wind turbines, which possibly affected population size. Due to the differences in study duration and design, we cannot provide general conclusions on the effects of WEF on grouse populations. We advise applying the precautionary principle by keeping grouse habitats free of wind energy developments, in particular where populations are small or locally threatened. Future studies should preferably apply a long-term before-after-control-impact design for multiple areas to allow for more general conclusions to be drawn on the effects of WEF on rare and threatened wildlife species.

Zusammenfassung

Der Einfluss von Windenergieanlagen auf Raufußhühner: eine systematische Literaturübersicht.

Der fortschreitende Ausbau von Windenergieanlagen und der dazugehörigen Infrastruktur weckt zunehmend Bedenken über deren Auswirkungen auf Wildtiere. Allerdings ist über die direkten und indirekten Auswirkungen von Windenergieanlagen auf die Sterblichkeitsrate, das Vorkommen und das Verhalten seltener und bedrohter Wildtierarten nur wenig bekannt. Wir haben eine systematische Literaturrecherche durchgeführt, um potentielle Auswirkungen von Windenergieanlagen auf Raufußhuhn-Arten zusammenzufassen. Wir analysierten dabei, ob Raufußhühner (1) mit Windenergieanlagen kollidieren, (2) Verhaltensreaktionen in Bezug auf Windenergieanlagen zeigen und (3) ob Auswirkungen auf die Populationsgröße oder -dynamik dokumentiert sind. Insgesamt flossen 35 Quellen (sowohl begutachtete Artikel als auch graue Literatur) in unsere Analyse ein. Die Auswirkungen von Windenergieanlagen auf Raufußhühner wurden bislang für acht Arten untersucht. Bei fünf Raufußhuhn-Arten wurden Kollisionsopfer gefunden. Die Vögel kollidierten vor allem mit den Türmen der Windenergieanlagen und nicht mit den sich bewegenden Rotorblättern. 15 Studien (über 7 Raufußhuhn-Arten) berichteten über Verhaltensreaktionen in Bezug auf Windenergieanlagen, hierzu zählten eine räumliche Meidung und die Verschiebung von Balz- oder Nistplätzen. Effekte auf Raufußhühner zeigten sich bis zu einer Entfernung von 500 m von der Windenergieinfrastruktur, was auf weiträumige Auswirkungen hindeutet. In sechs Fällen wurde in Gebieten mit Windkraftanlagen ein lokaler Rückgang der Raufußhühner-Abundanz beobachtet. Aufgrund der unterschiedlichen Studiendauer und -methoden können wir keine generellen Rückschlüsse auf die Auswirkungen von Windenergieanlagen auf Raufußhuhn-Populationen ziehen. Insbesondere bei kleinen oder lokal bedrohten Populationen empfehlen wir, das Vorsorgeprinzip anzuwenden und daher Raufußhuhn-Lebensräume frei von Windenergieanlagen zu halten. Zukünftige Studien sollten vorzugsweise ein langfristiges Studiendesign anwenden, das Erhebungen vor und nach der Erstellung von Windenergieanlagen in mehreren Studiengebieten vorsieht, um allgemein gültige Schlussfolgerungen über die Auswirkungen von Windenergieanlagen auf Raufußhühner zu ermöglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson RL, Morrison M, Sinclair K, Strickland D, Davis H, Kendall WM (1999) Studying wind energy/bird interactions: a guidance document. Nat Wind Coord Commit RESOLVE, Washington, p 87

    Google Scholar 

  • Baines D, Summers RW (1997) Assessment of bird collisions with deer fences in Scottish forests. J Appl Ecol 34:941–948

    Google Scholar 

  • Barclay RMR, Baerwald EF, Rydell J (2017) Bats. In: Perrow M (ed) Wildlife and wind farms: conflicts and solutions, vol 1. Pelagic, Exeter, UK, pp 191–221

    Google Scholar 

  • Bartuszevige AM, Daniels A (2016) Impacts of energy development, anthropogenic structures, and land use change on Lesser Prairie Chickens. In: Haukos DA, Boal C (eds) Ecology and conservation of Lesser Prairie Chickens. Taylor & Francis, Boca Raton

    Google Scholar 

  • Bellebaum J, Korner-Nievergelt Z, Dürr T, Mammen U (2013) Wind turbine fatalities approach a level of concern in a raptor population. J Nat Conserv 21:394–400

    Google Scholar 

  • Bevanger K (1994) Bird interactions with utility structures: collision and electrocution, causes and mitigating measures. Ibis 136:412–425

    Google Scholar 

  • Bevanger K (1995) Estimates and population consequences of tetraonid mortality caused by collisions with high tension power lines in Norway. J Appl Ecol 32:745–753

    Google Scholar 

  • Bevanger K (1999) Estimating bird mortality caused by collision with power lines and electrocution: a review of methodology. In: Ferrer M, Janss GFE (eds) Birds and power lines. Quercus, Madrid, pp 29–56

    Google Scholar 

  • Bevanger K, Brøseth H (2004) Impact of power lines on bird mortality in a subalpine area. Anim Biodivers Conserv 27:67–77

    Google Scholar 

  • Bevanger K, Berntsen F, Clausen S, Dahl EL, Flagstad Ø, Follestad A, Halley D, Hanssen F, Johnsen L, Kvaløy P, Lund-Hoel P, May R, Nygård T, Pedersen HC, Reitan O, Røskaft E, Steinheim Y, Stokke B, Vang R (2010a) Pre- and post-construction studies of conflicts between birds and wind turbines in coastal Norway (BirdWind). Report on findings 2007–2010. NINA Report 620:152

    Google Scholar 

  • Bevanger K, Dahl EL, Gjershaug JO, Halley D, Hanssen F, Nygård T, Pearson M, Pedersen HC, Reitan O (2010b) Avian post-construction studies and EIA for planned ex-tension of the Hitra wind power plant. NINA Rep 503:68

    Google Scholar 

  • Bioscan (2001) Novar Windfarm Ltd Ornithological Monitoring Studies-breeding bird and birdstrike monitoring 2001 results and 5-year review. Report to National Wind Power. Bioscan, UK

    Google Scholar 

  • BirdLife International (2016) The IUCN red list of threatened species 2016 version 3.1. https://www.iucnredlist.org/species/22679487/85942729. Accessed on 15 Mar 2018

  • Braun CE, Britt T, Wallestad RO (1977) Guidelines for maintenance of Sage Grouse habitats. Wildl Soc Bull 5:99–106

    Google Scholar 

  • Braunisch V, Suchant R (2013) The Capercaillie Tetrao urogallus action plan in the Black Forest: an integrative concept for the conservation of a viable population. Vogelwelt 134:29–41

    Google Scholar 

  • Braunisch V, Patthey P, Arlettaz R (2011) Spatially explicit modeling of conflict zones between wildlife and snow sports: prioritizing areas for winter refuges. Ecol Appl 21:955–967

    PubMed  Google Scholar 

  • Braunisch V, Coppes J, Bächle S, Suchant R (2015) Underpinning the precautionary principle with evidence: a spatial concept for guiding wind power development in endangered species’ habitats. J Nat Conserv 24:31–40

    Google Scholar 

  • Bright J, Langston R, Bullman R, Evans R, Gardner S, Pearce-Higgins J (2008) Map of bird sensitivities to wind farms in Scotland: a tool to aid planning and conservation. Biol Conserv 141:2342–2356

    Google Scholar 

  • Brown WM, Drewien RC (1995) Evaluation of two power line markers to reduce crane and waterfowl collision mortality. Wildl Soc Bull 23:217–227

    Google Scholar 

  • Brown KW, Hamilton BL (2004) Bird and bat monitoring at the McBride Lake wind farm, Alberta 2003–2004. Report prepared for Vision Quest Windelectric, Calgary, p 21

    Google Scholar 

  • Carrete M, Sánchez-Zapata JA, Benítez JR, Lobón M, Donázara JA (2009) Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol Conserv 142:2954–2961

    Google Scholar 

  • Catt DC, Dugan D, Green RE, Moncrieff R, Moss R, Picozzi N, Summers RW, Tyler GA (1994) Collisions against fences by woodland grouse. Scotl For 67:105–118

    Google Scholar 

  • Connelly JW, Schroeder MA, Sands AR, Braun CE (2000) Guidelines to manage Sage Grouse populations and their habitats. Wildl Soc Bull 28:967–985

    Google Scholar 

  • Coppes J, Ehrlacher J, Thiel D, Suchant R, Braunisch V (2017) Outdoor recreation causes effective habitat reduction in Capercaillie Tetrao urogallus: a major threat for geographically restricted populations. J Avian Biol 48:1583–1594

    Google Scholar 

  • Coppes J, Nopp-Mayr U, Grünschachner-Berger V, Storch I, Suchant R, Braunisch V (2018) Habitat suitability modulates the response of wildlife to human recreation. Biol Conserv 227:56–64

    Google Scholar 

  • Cryan PM, Barclay RMR (2009) Causes of bat fatalities at wind turbines: hypotheses and predictions. J Mammal 90:1330–1340

    Google Scholar 

  • De Lucas M, Perrow M (2017) Birds: collisions. In: Perrow M (ed) Wildlife and wind farms: conflicts and solutions, vol 1. Onshore: potential effects. Pelagic, Exeter, pp 155–190

    Google Scholar 

  • De Lucas M, Janss GFE, Whitfield DP, Ferrer M (2008) Collision fatality of raptors in wind farms does not depend on raptor abundance. J Appl Ecol 45:1695–1703

    Google Scholar 

  • Deutz A, Grünschachner-Berger V (2006) Birkhahnen verluste im Bereich einer Windkraftanlage. Anblick 1:16–17

    Google Scholar 

  • Douglas DJT, Bellamy PE, Pearce-Higgins JW (2011) Changes in the abundance and distribution of upland breeding birds at an operational wind farm. Bird Study 58:37–43

    Google Scholar 

  • Drewitt AL, Langston RHW (2006) Assessing the impacts of wind farms on birds. Ibis 148:29–42

    Google Scholar 

  • Drewitt AL, Langston RHW (2008) Collision effects of wind-power generators and other obstacles on birds. Ann N Y Acad Sci 1134:233–266

    PubMed  Google Scholar 

  • Elzay S, Tronstad L, Dillon ME (2017) Terrestrial invertebrates. In: Perrow M (ed) Wildlife and wind farms: conflicts and solutions, vol 1. Pelagic, Exeter, UK, pp 63–77

    Google Scholar 

  • Everaert J, Stienen EWM (2007) Impact of wind turbines on birds in Zeebrugge (Belgium). Biodivers Conserv 16:3345–3359

    Google Scholar 

  • Falkdalen U, Falkdalen Lindahl L, Nygård T (2013) Pre- and post construction studies on the effects on birds at Storrun wind farm in the mountain-region of Jämtland, Sweden. Vindval Report 6574:138

    Google Scholar 

  • Fox AD, Desholm M, Kahlert J, Christensen TK, Krag-Petersen IB (2006) Information needs to support environmental impact assessments of the effects of European marine offshore wind farms on birds. Wind, fire and water: renewable energy and birds. Ibis 148:129–144

    Google Scholar 

  • Frey NS, Conover MR (2006) Habitat use by mesopredators in a corridor environment. J Wildl Manage 70:1111–1118

    Google Scholar 

  • González MA (2018) Female Cantabrian Capercaillie dead by collision with wind turbine. Grouse News 55:15–17

    Google Scholar 

  • González MA, Ena V (2011) Cantabrian Capercaillie signs disappeared after a wind farm construction. Chioglossa 3:65–74

    Google Scholar 

  • González MA, García JT, Wengert E, Fuertes B (2016) Severe decline in Cantabrian Capercaillie Tetrao urogallus cantabricus habitat use after construction of a wind farm. Bird Conserv Int 26:256–261

    Google Scholar 

  • Graff BJ (2015) An assessment of direct mortality to avifauna from wind energy facilities in North Dakota and South Dakota. M.Sc. thesis, South Dakota State University, p 88

  • Gratson MW, Whitman CL (2000) Road closures and density and success of Elk hunters in Idaho. Wildl Soc Bull 28:302–310

    Google Scholar 

  • Grünschachner-Berger V, Kainer M (2011) Black Grouse Tetrao tetrix (Linnaeus 1758): how to live between skiing areas and windparks. Egretta 52:46–54

    Google Scholar 

  • GWEC (2018) Global wind report 2018. Global Wind Energy Council. Downloaded from: http://www.gwec.net. Accessed 06 May 2019

  • Hagen CA, Jamison BE, Giesen KM, Riley TZ (2004) Guidelines for managing Lesser Prairie Chicken populations and their habitats. Wildl Soc Bull 32:69–82

    Google Scholar 

  • Harju SM, Dzialak HR, Taylor RC, Hayden-Wing LD, Winstead JB (2010) Thresholds and time lags in effects of energy development on Greater Sage-grouse populations. J Wildl Manage 74:437–448

    Google Scholar 

  • Harrison JO, Brown MB, Powell LA, Schacht WH, Smith JA (2017) Nest site selection and nest survival of Greater Prairie Chickens near a wind energy facility. Condor 119:659–672

    Google Scholar 

  • Heldin JO, Skarin A, Neumann W, Olsson M, Jung J, Kindberg NW (2017) Terrestrial mammals. In: Perrow M (ed) Wildlife and wind farms: conflicts and solutions, vol 1. Pelagic, Exeter, UK, pp 222–240

    Google Scholar 

  • Hoover SL, Morrison ML (2005) Behaviour of Red-tailed Hawks in a wind turbine development. J Wildl Manage 69:150–159

    Google Scholar 

  • Hötker H (2017) Birds: displacement. In: Perrow M (ed) Wildlife and wind farms: conflicts and solutions, vol 1. Pelagic, Exeter, UK, pp 119–154

    Google Scholar 

  • Hovick TJ, Elmore RD, Dahlgren DK, Fuhlendorf SD, Engle DM (2014) Evidence of negative effects of anthropogenic structures on wildlife: a review of grouse survival and behaviour. J Appl Ecol 51:1680–1689

    Google Scholar 

  • Hunt WG, Hunt T (2006) The trend of golden eagle territory occupancy in the Vicinity of the altamont pass wind resource area: 2005 survey. California Energy Commission, PIER Energy-Related Environmental Research. CEC-500-2006-056

  • Immitzer M, Nopp-Mayr U, Zohmann M (2014) Effects of habitat quality and hiking trails on the occurrence of Black Grouse (Tetrao tetrix L.) at the northern fringe of alpine distribution in Austria. J Ornithol 155:173–181

    Google Scholar 

  • IUCN/SSC (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0, 8th edn. IUCN Species Survival Commission, Gland, p 57

    Google Scholar 

  • Jacob G, Debrunner R, Gugerli F, Schmid B, Bollmann K (2010) Field surveys of Capercaillie (Tetrao urogallus) in the Swiss Alps underestimated local abundance of the species as revealed by genetic analyses of non-invasive samples. Conserv Genet 11:33–44

    Google Scholar 

  • Jain A, Kerlinger P, Curry R, Slobodnik L, Lehman M (2009) Annual report for the Maple Ridge wind power project post-construction bird and bat fatality study-2008. Iberdrola Renewables and Horizon Energy, p 73

  • Johnston NN, Bradley JE, Otter KA (2014) Increased flight altitudes among migrating Golden Eagles suggest turbine avoidance at a Rocky Mountain wind installation. PLoS One 9:e93030

    PubMed  PubMed Central  Google Scholar 

  • Kerlinger P (2002) An assessment of the impacts of Green Mountain Power Corporation’s wind power facility on breeding and migrating birds in Searsburg. Report prepared for the Vermont Department of Public Service, Montpelier, VT, p 95

    Google Scholar 

  • Kerns J, Kerlinger P (2004) A study of bird and bat collision fatalities at the Mountaineer Wind Energy Center, Tucker County, West Virginia. Annual report for 2003. Prepared for FPL Energy and Mountaineer Wind Energy Center Technical Review Committee. Curry and Kerlinger, McLean, Virginia

  • King DI, De Graaf RM, Griffin CR (1998) Edge-related nest predation in clearcut and groupcut stands. Conserv Biol 12:1412–1415

    Google Scholar 

  • Koschinski S, Culik BM, Damsgaard Henriksen O, Tregenza N, Ellis G, Jansen C, Kathe G (2003) Behavioural reactions of free-ranging porpoises and seals to the noise of a simulated 2 MW windpower generator. Mar Ecol Prog Ser 265:263–273

    Google Scholar 

  • Krijgsveld KL, Akershoek K, Schenk F, Dijkf F, Dirksen S (2009) Collision risk of birds with modern large wind turbines. Ardea 97:357–366

    Google Scholar 

  • Kuvlesky WP, Brennan LA, Morrison ML, Boydston KK, Ballard BM, Bryant FC (2007) Wind energy development and wildlife conservation: challenges and opportunities. J Wildl Manage 71:2487–2498

    Google Scholar 

  • LAG VSW (2015) Working Group of German State Bird Conservancies-recommendations for distances of wind turbines to important areas for birds as well as breeding sites of selected bird species (as of April 2015). Ber Vogelsch 51:15–42

    Google Scholar 

  • Langgemach T, Dürr T (2019) Informationen über Einflüsse der Windenergienutzung auf Vögel.-Stand 07. https://lfu.brandenburg.de/cms/media.php/lbm1.a.3310.de/vsw_dokwind_voegel.pdf. Accessed Jan 2019

  • Langston RHW, Pullan JD (2003) Windfarms and birds: an analysis of the effects of wind farms on birds, and guidance on environmental assessment criteria and site selection issues. RSPB/Birdlife International, Strasbourg

    Google Scholar 

  • LeBeau CW, Beck JL, Johnson GD, Holloran MJ (2014) Short-term impacts of wind energy development on Greater Sage-grouse fitness. J Wildl Manage 78:522–530

    Google Scholar 

  • LeBeau CW, Beck JL, Johnson GD, Nielson RM, Holloran MJ, Gerow KG, McDonald TL (2017a) Greater Sage-grouse male lek counts relative to a wind energy development. Wildl Soc Bull 41:17–26

    Google Scholar 

  • LeBeau CW, Johnson GD, Holloran MJ, Beck JL, Nielson RM, Kauffman ME, Rodemaker EJ, McDonald TL (2017b) Greater Sage-grouse habitat selection, survival, and wind energy infrastructure. J Wildl Manage 81:690–711

    Google Scholar 

  • Lecy JD, Beatty KE (2012) Representative literature reviews using constrained snowball sampling and citation network analysis. Social Science Research Network, Rochester

    Google Scholar 

  • Lentner R, Masoner A, Lehne F (2018) Are counts on leks of Capercaillie and Black Grouse still state-of-the-art? Results from grouse monitoring in Tirol, Austria. Ornithol Beobach 115:215–238

    Google Scholar 

  • Lindström J, Ranta E, Lindén H (1996) Large-scale synchrony in the dynamics of Capercaillie, Black Grouse and Hazel Grouse populations in Finland. Oikos 76:221–227

    Google Scholar 

  • Long CV, Flint JA, Lepper PA (2011) Insect attraction to wind turbines: does colour play a role? Eur J Wildl Res 57:323–331

    Google Scholar 

  • Madders M, Whitfield DP (2006) Upland raptors and the assessment of wind farm impacts. Ibis 148:43–56

    Google Scholar 

  • Marques AT, Batalha H, Rodrigues S, Costa H, Pereira MJR, Fonseca C, Mascarenhas M, Bernardino J (2014) Understanding bird collisions at wind farms: an updated review on the causes and possible mitigation strategies. Biol Conserv 179:40–52

    Google Scholar 

  • McNew LB, Hunt LM, Gregory AJ, Wisely SM, Sandercock BK (2014) Effects of wind energy development on nesting ecology of Greater Prairie Chickens in fragmented grasslands. Conserv Biol 28:1089–1099

    PubMed  PubMed Central  Google Scholar 

  • Meek ER, Ribbands JB, Christer WG, Davy PR, Higginson I (1993) The effects of aero-generators on moorland bird populations in the Orkney Islands, Scotland. Bird Study 40:140–143

    Google Scholar 

  • Mollet P, Stadler B, Bollmann K (2008) Aktionsplan Auerhuhn Schweiz. Artenförderung Vögel Schweiz. Umwelt-Vollzug Nr. 0804. Bundesamt für Umwelt, Schweizerische Vogelwarte, Schweizer Vogelschutz SVS/BirdLife Schweiz, Bern, Sempach, Zürich, p 104

  • Myers N (1993) Biodiversity and the precautionary principle. Ambio 22:74–79

    Google Scholar 

  • Nopp-Mayr U, Zohmann M, Kranabitl T, Grünschachner-Berger V (2016) Kollisionen von Raufußhühnern an Freileitungen und Liften in Österreich (Collision mortality of Austrian tetraonids). BOKU‐Berichte zur Wildtierforschung und Wildbewirtschaftung 21. Universität für Bodenkultur Wien. ISSN 1021‐3252, ISBN978‐3‐900932‐43‐5

  • Patthey P, Signorell N, Rotelli L, Arlettaz R (2012) Vegetation structural and compositional heterogeneity as a key feature in Alpine Black Grouse microhabitat selection: conservation management implications. Eur J Wildl Res 58:59–70

    Google Scholar 

  • Pearce-Higgins JW, Stephen L, Langston RHW, Bainbridge IP, Bullman R (2009) The distribution of breeding birds around upland wind farms. J Appl Ecol 46:1323–1331

    Google Scholar 

  • Pearce-Higgins JW, Stephen L, Douse A, Langston RHW (2012) Greater impacts of wind farms on bird populations during construction than subsequent operation: results of a multi-site and multi-species analysis. J Appl Ecol 49:386–394

    Google Scholar 

  • Percival S, Percival T, Lowe T (2018) Minnygap Wind Farm: post-construction phase breeding bird surveys 2018 (year 2). Ecology consulting report to Renewable Energy Systems

  • Perrow MR (2017) Wildlife and wind farms: conflicts and solutions, vol 1. Pelagic, Exeter

    Google Scholar 

  • Plumb RT, Lautenbach JM, Robinson SG, Haukos DA, Winder VL, Hagen CA, Sullins DS, Pitman JC, Dahlgren DK (2018) Lesser Prairie Chicken space use in relation to anthropogenic structures. J Wildl Manage 83:216–230

    Google Scholar 

  • Potapov R, Sale R (2013) Grouse of the world. New Holland, UK, p 408

    Google Scholar 

  • Powlesland RG (2009) Impacts of wind farms on birds: a review. Science for conservation 289. ISSN 1177–9241. New Zealand Department of Conservation

  • Proet MC (2017) The influence of wind energy development on Columbian Sharp-tailed Grouse (Tympanuchus phasianellus columbianus) breeding season ecology in Eastern Idaho. M.Sc. thesis, Utah State University, p 90

  • Pruett CL, Patten MA, Wolfe DH (2009a) It’s not easy being green: wind energy and a declining grassland bird. Bioscience 59:257–262

    Google Scholar 

  • Pruett CL, Patten MA, Wolfe DH (2009b) Avoidance behavior by prairie grouse: implications for development of wind energy. Conserv Biol 23:1253–1259

    PubMed  Google Scholar 

  • Pullin AS, Stewart GB (2006) Guidelines for systematic review in conservation and environmental management. Conserv Biol 20:1647–1656

    PubMed  Google Scholar 

  • Rabin LA, Coss RG, Owings DH (2006) The effects of wind turbines on antipredator behavior in California Ground Squirrels (Spermophilus beecheyi). Biol Conserv 131:410–420

    Google Scholar 

  • Reese KP, Connelly JW (1997) Translocations of Sage Grouse Centrocercus urophasianus in North America. Wildl Biol 3:235–241

    Google Scholar 

  • Renewable Energy Network (2018) Renewables global status report-a comprehensive annual overview of the state of renewable energy. REN21

  • Richard S, Wacrenier-Cere N, Hazard D, Saint-Dizier H, Arnould C, Faure JM (2008) Behavioural and endocrine fear response in Japanese Quail upon presentation of a novel object in the home cage. Behav Process 77:313–319

    CAS  Google Scholar 

  • Rönning G (2017) Wind power developments kill Capercaillie. Tjäderkommittén. http://www.tjaderobs.se/. Accessed 22 Feb 2018

  • Rydell J, Bach L, Dubourg-Savage M, Green M, Rodrigues L, Hedenström A (2010) Bat mortality at wind turbines in Northwestern Europe. Acta Chiropterol 12:261–274

    Google Scholar 

  • Sachser F, Nopp-Mayr U, Zohmann M, Schweiger A-K, Grünschachner-Berger V, Immitzer M (2017) Searching the right tie—expert-based vs. statistical niche modeling for habitat management at the alpine treeline ecotone. Ecol Eng 100:107–119

    Google Scholar 

  • Saidur R, Rahim NA, Islam MR, Solangi KH (2011) Environmental impact of wind energy. Renew Sustain Energ Rev 15:2423–2430

    Google Scholar 

  • Seiler C, Angelstam P, Bergmann H-H (2000) Conservation releases of captive-reared grouse in Europe-what do we know and what do we need? Cah Ethol 2–4:235–252

    Google Scholar 

  • Siano R, Klaus S (2013) Auerhuhn Tetrao urogallus Wiederansiedlungs-und Bestandsstützungsprojekte in Deutschland nach 1950, eine Übersicht. Vogelwelt 134:3–18

    Google Scholar 

  • Silva MR, Passos I (2017) Vegetation. In: Perrow M (ed) Wildlife and wind farms: conflicts and solutions, vol 1. Pelagic, Exeter, UK, pp 40–62

    Google Scholar 

  • Smallwood KS, Rugge L, Morrison ML (2009) Influence of behavior on bird mortality in wind energy developments. J Wildl Manage 73:1082–1098

    Google Scholar 

  • Smith JA, Whalen CE, Bomberger Brown M, Powell LA (2016) Indirect effects of an existing wind energy facility on lekking behavior of Greater Prairie Chickens. Ethology 122:419–429

    Google Scholar 

  • Smith JA, Brown MB, Harrison JO, Powell LA (2017) Predation risk: a potential mechanism for effects of a wind energy facility on Greater Prairie Chicken survival. Ecosphere 8:e01835. https://doi.org/10.1002/ecs2.1835

    Article  Google Scholar 

  • Snyder WJ, Pelren EC, Crawford JA (1999) Translocation histories of prairie grouse in the United States. Wildl Soc Bull 27:428–432

    Google Scholar 

  • Stewart GB, Pullin AS, Coles CF (2007) Poor evidence-base for assessment of windfarm impacts on birds. Environ Conserv 34:1–11

    Google Scholar 

  • Storch I (1995) Annual home ranges and spacing patterns of Capercaillie in Central Europe. J Wildl Manage 59:392–400

    Google Scholar 

  • Storch I (2007) Grouse: status survey and conservation action plan 2006–2010. IUCN, Gland

    Google Scholar 

  • Storch I (2013) Human disturbance of grouse-why and when? Wildl Biol 19:390–403

    Google Scholar 

  • Strickland MD, Arnett EB, Erickson WP, Johnson DH, Johnson GD, Morrison ML, Shaffer JA, Warren-Hicks W (2011) Comprehensive guide to studying wind energy/wildlife interactions. Prepared for the National Wind Coordinating Collaborative, Washington

    Google Scholar 

  • Suchant R, Braunisch V (2008) Rahmenbedingungen und Handlungsfelder für den Aktionsplan Auerhuhn: Grundlagen für ein integratives Konzept zum Erhalt einer überlebensfähigen Auerhuhnpopulation im Schwarzwald. Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg

  • Summers RW, McFarlane J, Pearce-Higgins J (2007) Measuring avoidance by Capercaillie Tetrao urogallus of woodlands close to tracks. Wildl Biol 13:19–27

    Google Scholar 

  • Tabassum-Abbasi Premalatha M, Abbasi T, Abbasi SA (2014) Wind energy: increasing deployment, rising environmental concerns. Renew Sustain Energ Rev 31:270–288

    Google Scholar 

  • Thiel D, Jenni-Eiermann S, Braunisch V, Palme R, Jenni L (2008) Ski tourism affects habitat use and evokes a physiological stress response in Capercaillie Tetrao urogallus: a new methodological approach. J Appl Ecol 45:845–853

    Google Scholar 

  • Thiel D, Jenni-Eiermann S, Palme R, Jenni L (2011) Winter tourism increases stress hormone levels in the Capercaillie Tetrao urogallus. Ibis 153:122–133

    Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30

    Google Scholar 

  • Van der Haegen MW, De Graaf RM (1996) Predation rates on artificial nests in an industrial forest landscape. For Ecol Manage 86:171–179

    Google Scholar 

  • Vodehnal B (2011) Location of Sharp-tailed Grouse and Greater Prairie Chicken display grounds in relation to NPPD Ainsworth wind energy facility 2006–2011. Nebraska Game and Parks Commission, Bassett, p 10

    Google Scholar 

  • Walker BL, Naugle DE, Doherty KE (2007) Greater Sage-grouse response to energy development and habitat loss. J Wildl Manage 71:2644–2654

    Google Scholar 

  • Wang S, Wang S (2015) Impacts of wind energy on environment: a review. Renew Sustain Energ Rev 49:437–443

    Google Scholar 

  • Watson A, Moss R (2008) Grouse. HarperCollins, UK, p 529

    Google Scholar 

  • Whalen CE, Bomberger Brown M, McGee J, Powell LA, Walsh E (2018) Male Greater Prairie Chickens adjust their vocalizations in the presence of wind turbine noise. Condor 120:137–148

    Google Scholar 

  • Whitfield DP, Madders M (2006) Deriving collision avoidance rates for Red Kites Milvus milvus. Natural research information note 3. Natural Research, Banchory

    Google Scholar 

  • Winder VL, McNew LB, Gregory AJ, Hunt LM, Wisely SM, Sandercock BK (2014a) Space use by female Greater Prairie Chickens in response to wind energy development. Ecosphere 5:1–17. https://doi.org/10.1890/ES1813-00206.00201

    Article  Google Scholar 

  • Winder VL, McNew LB, Gregory AJ, Hunt LM, Wisely SM, Sandercock BK (2014b) Effects of wind energy development on survival of female Greater Prairie Chickens. J Appl Ecol 51:395–405

    Google Scholar 

  • Winder VL, Gregory AJ, McNew LB, Sandercock BK (2015) Responses of male Greater Prairie Chickens to wind energy development. Condor 117:284–296

    Google Scholar 

  • Zeiler HP, Grünschachner-Berger V (2009) Impact of wind power plants on Black Grouse, Lyrurus tetrix in alpine regions. Folia Zool 58:173–182

    Google Scholar 

  • Zwart MC, Robson P, Rankin S, Whittingham MJ, McGowan PJK (2015) Using environmental impact assessment and post-construction monitoring data to inform wind energy developments. Ecosphere 6:1–11

    Google Scholar 

  • Zwart MC, Dunn JC, McGowan PJK, Whittingham MJ (2016) Wind farm noise suppresses territorial defense behavior in a songbird. Behav Ecol 27:101–108

    Google Scholar 

Download references

Funding

This study was funded by the Ministry of the Environment, Climate Protection, the Energy Sector Baden-Württemberg and the Ministry for Rural Affairs and Consumer Protection Baden-Württemberg; it was co-funded by Elektrizitätswerk Mittelbaden, Energie Baden-Württemberg, Enercon, the German Wind Energy Association, Ökostromgruppe Freiburg, the Swedish Environmental Protection Agency (Vindval) and Windkraft Schonach. The funding organisations had no influence on the manuscript, study design, methods or interpretation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joy Coppes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by F. Bairlein.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppes, J., Braunisch, V., Bollmann, K. et al. The impact of wind energy facilities on grouse: a systematic review. J Ornithol 161, 1–15 (2020). https://doi.org/10.1007/s10336-019-01696-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-019-01696-1

Keywords

Navigation