Skip to main content
Log in

Common Terns on the East Atlantic Flyway: temporal–spatial distribution during the non-breeding period

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

We studied the temporal–spatial distribution of Common Terns Sterna hirundo along the East Atlantic Flyway. In 2009 and 2010 experienced adults from a colony on the German North Sea coast were tagged with geolocators recording light intensity and saltwater contact. Main objectives were the inter-individual temporal–spatial variation of migration routes and wintering areas, wintering site fidelity, and time spent at sea across the annual cycle. Geolocators had no effects on various traits of breeders, but their reproductive output suffered from egg breakage. This can be avoided by artificially incubating the eggs. Twelve routes of nine individuals were tracked. Transponder readings at the breeding site showed that birds left the colony 4 weeks before starting autumn migration. In spring and autumn, Common Terns stopped over around the Canary Islands. Main wintering distribution was the upwelling seas alongside the West African coast and similar between years, but different among individuals. Three females wintered further north and more offshore than six males. Pair mates wintered at different locations. Spring migration was longer (56 ± 8 days) than autumn migration (37 ± 17 days). During both migration and wintering the terns spent more time on salt water than during breeding and post-breeding. In most individuals saltwater contact was higher during the day than at night, reduced at sunrise and sunset likely due to foraging, and peaked about noon possibly related to resting or thermoregulation. Detailed ecological and behavioral studies of common terns during wintering are needed to clarify the results based on geolocators.

Zusammenfassung

Flussseeschwalben entlang des Ostatlantischen Zugweges: Raumzeitliche Verteilung außerhalb der Brutperiode Wir untersuchten die raumzeitliche Verteilung von Flussseeschwalben Sterna hirundo entlang des Ostatlantischen Zugweges. 2009 und 2010 wurden erfahrene Brutvögel einer Kolonie an der deutschen Nordseeküste mit Geolokatoren versehen, die Lichtintensität und Salzwasserkontakt aufzeichneten. Ziele der Untersuchungen waren die interindividuelle raumzeitliche Variation der Zugrouten und Überwinterungsgebiete, die Winterortstreue und die Dauer des Seewasserkontakts im Jahreszyklus. Die Geolokatoren beeinträchtigten die Flussseeschwalben nicht, der Reproduktionserfolg jedoch war durch Bruch der Eier verringert, was durch Austausch und Ausbrüten der Eier in einem Inkubator vermieden werden kann. 12 Routen von 9 Individuen wurden verfolgt. Die Registrierungen der zusätzlich mit Transpondern gekennzeichneten Vögel zeigten, dass sie den Koloniestandort vier Wochen vor Beginn der Herbstwanderung verließen. Im Frühjahr und Herbst legten einige Flussseeschwalben bei den Kanarischen Inseln einen Zwischenhalt ein. Die Hauptverbreitung im Winter erstreckte sich entlang der Westafrikanischen Küste und war ähnlich zwischen den Jahren, aber verschieden zwischen Individuen. Die drei Weibchen überwinterten weiter nördlich als die sechs Männchen und die Paarpartner an verschiedenen Orten. Der Frühjahrszug dauerte länger (56 ± 8 d) als der Herbstzug (37 ± 17 d). Während der Wanderung und Überwinterung verbrachten die Flussseeschwalben mehr Zeit auf dem Salzwasser als im Brutgebiet. Die meisten Individuen hatten tagsüber längere Salzwasserkontakte als nachts, die bei Sonnenaufgang und -untergang stark reduziert waren, vermutlich aufgrund der Nahrungssuche. Während der Mittagszeit waren Salzwasserkontakte besonders intensiv, möglicherweise bedingt durch Rasten oder Thermoregulation. Detaillierte Studien zu Ökologie und Verhalten im Winter sollten folgen, um die auf den Geolokatoren basierten Ergebnisse zu klären.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arístegui J, Gasol JM, Duarte CM, Herndl GJ (2009) Microbial oceanography of the dark ocean’s pelagic realm. Limnol Oceanogr 54:1501–1529

    Article  Google Scholar 

  • Ashmole NP, Tovar HS (1968) Prolonged parental care in royal terns and other birds. Auk 85:90–100

    Article  Google Scholar 

  • Bairlein F, Dierschke J, Dierschke V, Salewski V, Geiter O, Hüppop K, Köppen U, Fielder W (2014) Atlas des Vogelzugs. AULA, Wiebelsheim

    Google Scholar 

  • Becker PH (2010) Populationsökologie der Flussseeschwalbe: Das Individuum im Blickpunkt. In: Bairlein F, Becker PH (eds) 100 Jahre Institut für Vogelforschung “Vogelwarte Helgoland”. Aula, Wiebelsheim, pp 137–155

  • Becker PH, Ludwigs J-D (2004) Sterna hirundo common tern. In: Parkin D (ed) BWP update, vol 6, nos 1/2. Oxford University Press, NY, pp 93–139

  • Becker PH, Wink M (2003) Influences of sex, sex composition of brood and hatching order on mass growth in common terns (Sterna hirundo). Behav Ecol Sociobiol 54:136–146

    Google Scholar 

  • Becker RA, Chambers JM, Wilks AR (1988) The new S language. Wadsworth and Brooks/Cole, Belmont

    Google Scholar 

  • Becker PH, Wendeln H, González-Solís J (2001) Population dynamics, recruitment, individual quality and reproductive strategies in common terns marked with transponders. Ardea 89(special issue):239–250

    Google Scholar 

  • Becker PH, Dittmann T, Ludwigs J-D, Limmer B, Ludwig SC, Bauch C, Braasch A, Wendeln H (2008) Timing of initial arrival at the breeding site predicts age at first reproduction in a long-lived migratory bird. PNAS 105:12349–12352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blokpoel H, Morris R, Trull P (1982) Winter observations of common terns in Trinidad, Guyana, and Suriname. Colon Waterbirds 5:144–147

    Article  Google Scholar 

  • Blokpoel H, Morris R, Tessier G (1984) Field investigations of the biology of common terns wintering in Trinidad. J Field Ornithol 55:424–434

    Google Scholar 

  • Brenninkmeijer A, Stienen EWM, Klaassen M, Kersten M (2002) Feeding ecology of wintering terns in Guinea-Bissau. Ibis 144:602–613

    Article  Google Scholar 

  • Breton AR, Nisbet ICT, Mostello CS, Hatch JJ (2014) Age-dependent breeding dispersal and adult survival within a metapopulation of common terns Sterna hirundo. Ibis 156:534–547

    Article  Google Scholar 

  • Bruderer B, Boldt A (2001) Flight characteristics of birds: 1. Radar measurements of speeds. Ibis 143:178–204

    Article  Google Scholar 

  • Bugoni L, Cormons TD, Boyne AW, Hays H (2005) Feeding grounds, daily foraging activities, and movements of common terns in Southern Brazil, determined by radio-telemetry. Waterbirds 28:468–477

    Article  Google Scholar 

  • Burger J (1980) The transition to independence and post fledging parental care in seabirds. In: Burger J, Olla BL, Winn HE (eds) Marine birds. Behavior of marine animals, vol 4. Plenum Press, New York, pp 367–447

    Chapter  Google Scholar 

  • Calenge C (2006) The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Cohen EB, Hostetler JA, Royle JA, Marra PP (2014) Estimating migratory connectivity of birds when re-encounter probabilities are heterogeneous. Ecol Evol 4:1659–1670

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias MP, Granadeiro JP, Catry P (2013) Individual variability in the migratory path and stopovers of a long-distance pelagic migrant. Anim Behav 86:359–364

    Article  Google Scholar 

  • Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc Natl Acad Sci 107:2078–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekstrom PA (2004) An advance in geolocation by light. Mem Natl Inst Polar 58:210–226

    Google Scholar 

  • Ezard T, Becker PH, Coulson T (2006) The contributions of age and sex to variation in common tern population growth rate. J Anim Ecol 75:1379–1386

    Article  CAS  PubMed  Google Scholar 

  • Fijn RC, Hiemstra D, Phillips RA, van der Winden J (2013) Arctic terns Sterna paradisaea from the Netherlands migrate record distances across three oceans to Wilkes Land, East Antarctica. Ardea 101:3–12

    Article  Google Scholar 

  • Fudickar AM, Wikelski M, Partecke J (2012) Tracking migratory songbirds: accuracy of light-level loggers (geolocators) in forest habitats. Methods Ecol Evol 3:47–52

    Article  Google Scholar 

  • Garthe S, Benvenuti S, Montevecchi WA (2000) Pursuit plunging by northern gannets (Sula bassana) “feeding on capelin (Mallotus villosus)”. Proc R Soc B 267:1717–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garthe S, Ludynia K, Hueppop O, Kubetzki U, Meraz JF, Furness RW (2012) Energy budgets reveal equal benefits of varied migration strategies in northern gannets. Mar Biol 159:1907–1915

    Article  Google Scholar 

  • González-Solís J, Croxall JP, Oro D, Ruiz X (2007) Trans-equatorial migration and mixing in the wintering areas of a pelagic seabird. Front Ecol Environ 5:297–301

    Article  Google Scholar 

  • Grecian WJ, Witt MJ, Attrill MJ (2016) Multi-species top predator tracking reveals link between marine biodiversity and ocean productivity. Biol Lett (in revision)

  • Guilford T, Meade J, Willis J, Phillips RA, Boyle D, Roberts S, Collet M, Freeman R, Perrins CM (2009) Migration and stopover in a small pelagic seabird, the Manx shearwater Puffinus puffinus: insights from machine learning. Proc R Soc B 276:1215–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guilford T, Freeman R, Boyle D, Dean B, Kirk H, Phillips R, Perrins C (2011) A dispersive migration in the Atlantic puffin and its implications for migratory navigation. PLoS One 6:e21336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallworth MT, Sillett TS, Van Wilgenburg SL, Hobson KA, Marra PP (2015) Migratory connectivity of a Neotropical migratory songbird revealed by archival light-level geolocators. Ecol Appl 25:336–347

    Article  PubMed  Google Scholar 

  • Harrison P (1997) Seabirds of the world. Princeton University Press, Princeton

    Google Scholar 

  • Hayward DF, Oguntoyinbo J (1987) The climatology of West Africa. Hutchinson, London

    Google Scholar 

  • Hill RD (1994) Theory of geolocation by light levels. In: Burney J, Boeuf BJ, Laws RM (eds) Elephant seals: population ecology, behavior, and physiology. University of California Press, Berkeley, pp 227–236

    Google Scholar 

  • Liechti F (2006) Birds: Blowin’ by the wind? J Ornithol 147:202–211

    Article  Google Scholar 

  • Limmer B, Becker PH (2007) The relative role of age and experience in determining variation in body mass during the early breeding career of the common tern (Sterna hirundo). Behav Ecol Sociobiol 61:1885–1896

    Article  Google Scholar 

  • Lisovski S, Hahn S (2012) GeoLight—processing and analysing light-based geolocator data in R. Methods Ecol Evol 3:1055–1059

    Article  Google Scholar 

  • Lisovski S, Hewson CM, Klaassen RHG, Korner-Nievergelt F, Kristensen MW, Hahn S (2012) Geolocation by light: accuracy and precision affected by environmental factors. Methods Ecol Evol 3:603–612

    Article  Google Scholar 

  • McGregor HV, Dima M, Fischer HW, Mulitza S (2007) Rapid 20th-century increase in coastal upwelling off northwest Africa. Science 315:637–639

    Article  CAS  PubMed  Google Scholar 

  • Mostello CS, Nisbet ICT, Oswald SA, Fox JW (2014) Non-breeding season movements of six North American roseate terns Sterna dougallii tracked with geolocators. Seabird 27:1–21

    Google Scholar 

  • Müller MS, Massa B, Phillips RA, Dell’Omo G (2015) Seabirds mated for life migrate separately to the same places: behavioural coordination or shared proximate causes? Anim Behav 102:267–276

    Article  Google Scholar 

  • Neubauer W (1982) Der Zug mitteleuropaeischer Flusseeschwalben (Sterna hirundo) nach Ringfunden. Ber Vogelwarte Hiddensee 2:59–82

    Google Scholar 

  • Neves VC, Nava CP, Cormons M, Bremer E, Castresana G, Lima P, Azevedojun SM, Phillips RA, Magalhães MC, Santos RS (2015) Migration routes and non-breeding areas of common terns (Sterna hirundo) from the Azores. Emu 115:158–167

    Article  Google Scholar 

  • Nielsen A, Sibert JR (2007) State-space model for light-based tracking of marine animals. Can J Fish Aquat Sci 64:1055–1068

    Article  Google Scholar 

  • Nilsson C, Klaassen RH, Alerstam T (2013) Differences in speed and duration of bird migration between spring and autumn. Am Nat 181:837–845

    Article  PubMed  Google Scholar 

  • Nisbet ICT (2002) Common tern. Birds N Am 618:1–39

    Google Scholar 

  • Nisbet ICT, Cam E (2002) Test for age-specificity in survival of the common tern. J Appl Stat 29:65–83

    Article  Google Scholar 

  • Nisbet ICT, Montoya JP, Burger J, Hatch JJ (2002) Use of stable isotopes to investigate individual differences in diets and mercury exposures among common terns Sterna hirundo in breeding and wintering grounds. Mar Ecol Prog Ser 242:267–274

    Article  CAS  Google Scholar 

  • Nisbet ICT, Mostello CS, Veit RR, Fox JW, Afanasyev V (2011a) Migrations and winter quarters of five common terns tracked using geolocators. Waterbirds 34:32–39

    Article  Google Scholar 

  • Nisbet ICT, Szczys P, Mostello CS, Fox JW (2011b) Female common terns Sterna hirundo start autumn migration earlier than males. Seabird 24:103–106

    Google Scholar 

  • Palestis BG, Hines JE (2015) Adult survival and breeding dispersal of common terns (Sterna hirundo) in a declining population. Waterbirds 38:221–228

    Article  Google Scholar 

  • Pennycuick CJ, Åkesson S, Hedenström A (2013) Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory. J R Soc Interface 10:20130419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips RA, Silk JRD, Croxall JP, Afanasyev V, Briggs DR (2004) Accuracy of geolocation estimates for flying seabirds. Mar Ecol Prog Ser 266:265–272

    Article  Google Scholar 

  • Phillips RA, Silk JRD, Croxall JP, Afanasyev V, Briggs DR (2005) Summer distribution and migration of nonbreeding albatrosses: individual consistencies and implications for conservation. Ecology 86:2386–2396

    Article  Google Scholar 

  • R Core Team (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Ramos R, Sanz V, Militão T et al (2015) Leapfrog migration and habitat preferences of a small oceanic seabird, Bulwer’s petrel (Bulweria bulwerii). J Biogeogr 42:1651–1664

    Article  Google Scholar 

  • Ropert-Coudert Y, Wilson RP, Grémillet D, Kato A, Lewis S, Ryan PG (2006) Electrocardiogram recordings in free-ranging gannets reveal minimum difference in heart rate during flapping versus gliding flight. Mar Ecol Prog Ser 328:275–284

    Article  Google Scholar 

  • Salewski V, Bairlein F, Leisler B (2000) Recurrence of some palaearctic migrant passerine species in West Africa. Ringing Migr 20:29–30

    Article  Google Scholar 

  • Scandolara C, Rubolini D, Ambrosini R, Caprioli M, Hahn S, Liechti F, Romano A, Romano M, Sicurella B, Saino N (2014) Impact of miniaturized geolocators on barn swallow Hirundo rustica fitness traits. J Avian Biol 45:417–423

    Article  Google Scholar 

  • Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM (2006) Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proc Nat Acad Sci 103:12799–12802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommerfeld J, Kato A, Ropert-Coudert Y, Garthe S, Hindell MA (2013) The individual counts: within sex differences in foraging strategies are as important as sex-specific differences in masked boobies Sula dactylatra. J Avian Biol 44:531–540

    Article  Google Scholar 

  • Sorenson MC, Hipfner JM, Kyser TK, Norris DR (2009) Carry-over effects in a Pacific seabird: stable isotope evidence that non-breeding diet quality influences reproductive success. J Anim Ecol 78:460–467

    Article  Google Scholar 

  • Sumner MD, Wotherspoon SJ, Hindell MA (2009) Bayesian estimation of animal movement from archival and satellite tags. PLoS One 4:e7324

    Article  PubMed  PubMed Central  Google Scholar 

  • Szostek L, Becker PH (2012) Terns in trouble: demographic consequences of low breeding success and recruitment on a common tern population in the German Wadden Sea. J Ornithol 153:313–326

    Article  Google Scholar 

  • Szostek KL, Becker PH (2015) Marine primary productivity in the wintering area influences survival and recruitment in a migratory seabird. Oecologia 178:643–657

    Article  PubMed  Google Scholar 

  • Szostek KL, Bouwhuis S, Becker PH (2015) Are arrival date and body mass after spring migration influenced by large-scale environmental factors in a migratory seabird? Front Ecol Evol 3:42

    Article  Google Scholar 

  • Trierweiler C, Klaassen RGH, Drent RH, Exo K-M, Komdeur J, Bairlein F, Koks BJ (2014) Population specific migration routes and migratory connectivity in a long-distance migratory raptor. Proc R Soc B Lond 281:1471–2954

    Article  Google Scholar 

  • van der Winden J, Fijn RC, van Horssen PW, Gerritsen-Davidse D, Piersma T (2014) Idiosyncratic migrations of black terns (Chlidonias niger): diversity in routes and stopovers. Waterbirds 37:162–174

    Article  Google Scholar 

  • Weimerskirch H, Wilson RP (2000) Oceanic respite for wandering albatrosses. Nature 406:955–956

    Article  CAS  PubMed  Google Scholar 

  • Weimerskirch H, Bonadonna F, Bailleul F, Mabille G, Dell’Omo G, Lipp H-P (2002) GPS tracking of foraging albatrosses. Science 295:1259

    Article  CAS  PubMed  Google Scholar 

  • Wendeln H, Becker PH (1999) Significance of ring removal in Africa for a common tern Sterna hirundo colony. Ringing Migr 19:210–212

    Article  Google Scholar 

  • Wernham CV, Toms MP, Marchant JH, Clark JA, Siriwardena GM, Baillie SR (2002) The migration atlas: movements of the birds of Britain and Ireland. T & AD Poyser, London

    Google Scholar 

  • Wilson RP, Cooper J, Plötz J (1992a) Can we determine when marine endotherms feed? A case study with seabirds. J Exp Biol 167:267–275

    Google Scholar 

  • Wilson RP, Ducamp JJ, Rees G, Culik BM, Niekamp K (1992b) Estimation of location: global coverage using light intensity. In: Priede IG, Swift SM (eds) Wildlife telemetry: remote monitoring and tracking of animals. Ellis Horwood Ltd, Chichester, pp 131–134

    Google Scholar 

  • Wilson RP, Weimerskirch H, Lys P (1995) A device for measuring seabird activity at sea. J Avian Biol 26:172–175

    Article  Google Scholar 

  • Wilson RP, Grémillet D, Syder J, Kierspel MAM, Garthe S, Weimerskirch H, Schäfer-Neth C, Scolaro JA, Bost C-A, Plötz J, Nel D (2002) Remote-sensing systems and seabirds: their use, abuse and potential for measuring marine environmental variables. Mar Ecol Prog Ser 228:241–261

    Article  Google Scholar 

  • Zhang H, Vedder O, Becker PH, Bouwhuis S (2015) Age-dependent trait variation: the relative contribution of within-individual change, selective appearance and disappearance in a long-lived seabird. J Anim Ecol 84:797–807

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Christina Bauch, Alexander Braasch, Julia Spieker, Lesley Szostek, Katharina Weißenfels, Silas Wolf, and Christian Wolter for their help with field work. Simeon Lisovski helped with analyzing the light-level geolocation data. Kathrin Hüppop helped preparing the figures. We thank Dave Moore giving access to unpublished data of migration of common terns breeding at the Great Lakes and Olaf Geiter for providing ring recovery data of common terns. The manuscript was improved by helpful comments of Franz Bairlein and two anonymous reviewers. The studies were performed under license of the Nds. Landesamt für Verbraucherschutz und Lebensmittelsicherheit Oldenburg and of the Stadt Wilhelmshaven. H.S. is financed by the Deutsche Forschungsgemeinschaft (SCHM 2647/1-1) which also supported the project (BE 916/8 and 9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Becker.

Additional information

Communicated by N. Chernetsov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material (PDF 1762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becker, P.H., Schmaljohann, H., Riechert, J. et al. Common Terns on the East Atlantic Flyway: temporal–spatial distribution during the non-breeding period. J Ornithol 157, 927–940 (2016). https://doi.org/10.1007/s10336-016-1346-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-016-1346-2

Keywords

Navigation