Skip to main content

Advertisement

Log in

Morphological and behavioural adaptations to feed on nectar: how feeding ecology determines the diversity and composition of hummingbird assemblages

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Hummingbirds are the most specialised nectarivorous birds and show close ecological relationships to their food plants. Their small body size, bright colors, and unique behaviour have fascinated generations of naturalists. In this review, we investigate the morphological and behavioural adaptations of hummingbirds to feed on nectar and arthropods, and explore their diffuse co-evolution with their food plant species. Further, a list of plant genera including species mainly pollinated by hummingbirds is presented. Summarising the existing knowledge on hummingbird feeding ecology, we find that much of the variability in morphology and behaviour of hummingbirds is determined by their unique feeding mode and the constraints set by their food plants. Based on the existing literature, we developed a hierarchical system explaining how different environmental factors have shaped the current richness of hummingbirds, and their morphological and behavioural diversity. We propose that climatic stability within and between seasons and days determines the constancy of food availability, which in turn is the most important factor for species richness in hummingbird assemblages. However, the assemblage composition of hummingbirds is also influenced by phylogenetic factors, especially under harsh environmental conditions. Unsurprisingly, the highest morphological and behavioural diversity is observed in the most species-rich assemblages. This diversity may have at least partly evolved to reduce inter- and intraspecific competition. Independently of which morphological character we consider, the 360 different hummingbird species have evolved a large morphological variability to adapt to their individual feeding niches.

Zusammenfassung

Morphologische und Verhaltensanpassungen um Nektar zu fressen: Wie die Nahrungsökologie den Artenreichtum und die Zusammensetzung von Kolibrigemeinschaften bestimmt

Kolibris sind die am höchsten spezialisierten, Nektar fressenden Vögel und zeigen enge ökologische Anpassungen an ihre Futterpflanzen. Ihre geringe Körpergröße, ihre leuchtenden Farben und ihr einzigartiges Verhalten haben Generationen von Naturliebhabern fasziniert. In dieser Literaturübersicht untersuchen wir die morphologischen und Verhaltensanpassungen von Kolibris, um sich von Nektar und Arthropoden zu ernähren und erkunden die diffuse Koevolution mit ihren Futterpflanzen. Außerdem präsentieren wir eine Liste von Pflanzengattungen, in denen Arten vorkommen, die hauptsächlich kolibribestäubt sind. Indem wir das vorhandene Wissen über die Nahrungsökologie von Kolibris zusammengefassten, zeigen wir, dass die Variabilität in der Morphologie und dem Verhalten von Kolibris größtenteils durch ihre einzigartige Art der Nahrungsaufnahme und den Beschränkungen verursacht werden, die ihre Futterpflanzen vorgeben. Basierend auf der vorhandenen Literatur haben wir ein hierarchisches System entwickelt, das erklärt, wie unterschiedliche Umweltfaktoren den aktuellen Artenreichtum sowie die morphologische und Verhaltensvielfalt von Kolibris geformt haben. Wir postulieren, dass klimatische Stabilität innerhalb und zwischen Jahreszeiten und Tagen die kontinuierliche Verfügbarkeit von Nahrung bestimmt, was wiederum den wichtigsten Faktor für den Artenreichtum einer Kolibrigemeinschaft darstellt. Allerdings ist die Zusammensetzung von Kolibrigemeinschaften ebenfalls von phylogenetischen Faktoren abhängig, besonders unter harschen Umweltbedingungen. Wenig überraschend ist, dass die größte Vielfalt von morphologischer und Verhaltensvielfalt in den artenreichsten Kolibrigemeinschaften zu finden ist. Diese Diversität entstand vermutlich zumindest teilweise, um inter- und intraspezifische Konkurrenz zu vermeiden. Unabhängig davon welche morphologische Eigenschaft wir berücksichtigen, haben die etwa 360 bekannten Kolibriarten eine enorme morphologische Vielfalt entwickelt, um sich an ihre ökologischen Nischen anzupassen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrahamczyk S, Kessler M (2010) Hummingbird diversity, food niche characters, and assemblage composition along a latitudinal precipitation gradient in the Bolivian lowlands. J Ornithol 151:615–625

    Google Scholar 

  • Abrahamczyk S, Kluge J, Gareca Y, Reichle S, Kessler M (2011) The influence of climatic seasonality on the diversity of different tropical pollinator groups. PLoS ONE. doi:10.1371/journal.pone.0027115

    PubMed Central  PubMed  Google Scholar 

  • Abrahamczyk S, Souto-Vilarós D, McGuire J, Renner SS (2014a) Diversity and clade ages of the West Indian hummingbirds and of the largest plant clades dependent on them: A 5-9 My young mutualistic system. Biol J Linn Soc (in press)

  • Abrahamczyk S, Souto-Vilarós D, Renner SS (2014b) Escape from extreme specialization: passionflowers, bats, and the Sword-billed hummingbird. Proc R Soc Lond B 281:20140888

    Google Scholar 

  • Aguilar-Rodriguez PA, MacSwiney GMC, Krömer T, García-Franco JG, Knauer A, Kessler M (2014) First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae). Ann Bot 113:1047–1055

    PubMed Central  PubMed  Google Scholar 

  • Aizen MA (2005) Breeding system of Tristerix corymbosus (Loranthaceae), a winter-flowering mistletoe from the southern Andes. Austr J Bot 53:357–361

    Google Scholar 

  • Altshuler DL (2006) Flight performance and competitive displacement of hummingbirds across elevational gradients. Am Nat 167:216–229

    PubMed  Google Scholar 

  • Altshuler DL, Dudley R (2002) The ecological and evolutionary interface of hummingbird flight physiology. J Exp Biol 205:2325–2336

    PubMed  Google Scholar 

  • Araujo AC, Sazima M (2003) The assemblage of flowers visited by hummingbirds in the “capões” of Southern Pantanal, Mato Grosso do Sul, Brazil. Flora 198:427–435

    Google Scholar 

  • Arizmendi MC, Ornelas JF (1990) Hummingbirds and their floral resources in a tropical dry forest in Mexico. Biotropica 22:172–180

    Google Scholar 

  • Baker HG, Baker I (1982) Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: Nitecki MH (ed) Biochemical aspects of evolutionary biology 131–171. University of Chicago Press, Chicago

    Google Scholar 

  • Baltosser WH (1989) Availability and habitat selection by hummingbirds in Guadalupe Canyon. Wilson Bull 101:559–578

    Google Scholar 

  • Berns CM, Adams DC (2010) Bill shape and sexual shape dimorphism between two species of temperate hummingbirds: black-chinned Hummingbird (Archilochus alexandri) and Ruby-throated Hummingbird (A. colubris). Auk 127:626–635

    Google Scholar 

  • Bleher B, Potgieter CJ, Johnson DN, Böhning-Gaese K (2003) The importance of figs for frugivoroues in a South African costal forest. J Trop Ecol 19:375–386

    Google Scholar 

  • Bleiweiss R (1999) Joint effects of feeding and breeding behaviour on trophic dimorphism in hummingbirds. Proc R Soc Lond B 266:2491–2497

    Google Scholar 

  • Boyden TC (1978) Territorial defence against hummingbirds and insects by tropical hummingbirds. Condor 80:216–221

    Google Scholar 

  • Brice AT, Dahl KH, Grau RG (1989) Pollen digestibility in hummingbirds and psittacines. Condor 91:681–688

    Google Scholar 

  • Brown JH, Bowers MA (1985) Community organization in hummingbirds: relationships between morphology and ecology. Auk 102:251–269

    Google Scholar 

  • Brown JH, Kodric-Brown A (1979) Convergence, competition, and mimicry in a temperate community of hummingbird-pollinated flowers. Ecology 60:1022–1035

  • Brown JH, Kodric-Brown A, Whitham TG, Bond HW (1981) Competition between hummingbirds and insects for the nectar of two species of shrubs. Southwest Nat 26:133–145

    Google Scholar 

  • Büchert Lindberg A, Olesen JM (2001) The fragility of extreme specialization: passiflora mixta and its pollinating hummingbird Ensifera ensifera. J Trop Ecol 17:323–329

    Google Scholar 

  • Carpenter FL (1976) Ecology and evolution of an Andean hummingbird. Univ Calif Publ Zool 106:1–74

    Google Scholar 

  • Carpenter FL (1978) A spectrum of nectar-eater communities. Am Zool 18:809–819

    Google Scholar 

  • Carpenter FL (1979) Competition between hummingbirds and insects for nectar. Am Zool 19:1105–1114

    Google Scholar 

  • Chávez-Ramírez F, Down M (1992) Arthropod feeding in two Dominican hummingbird species. Wilson Bull 104:743–747

    Google Scholar 

  • Collins BG, Paton DC (1989) Consequences of differences in body mass, wing length and leg morphology for nectar feeding birds. Austr J Ecol 14:269–289

    Google Scholar 

  • Colwell RK (1973) Community organization among neotropical nectar-feeding birds. Am Zool 18:779–795

    Google Scholar 

  • Colwell RK (2000) Rensch´s rule crosses the line: convergent allometry of sexual size dimorphism in hummingbird and flower mites. Am Nat 156:495–510

    Google Scholar 

  • Cotton PA (1998a) Coevolution in an Amazonian hummingbird-plant community. Ibis 140:639–646

    Google Scholar 

  • Cotton PA (1998b) Temporal partitioning of a floral resource by territorial hummingbirds. Ibis 140:647–653

    Google Scholar 

  • Cotton PA (1998c) The hummingbird community of a lowland Amazonia rainforest. Ibis 140:512–521

    Google Scholar 

  • Cotton PA (2007) Seasonal resource tracking by Amazonian hummingbirds. Ibis 149:135–142

    Google Scholar 

  • Cruden RW (1972) Pollinators in high-elevation ecosystems: relative effectiveness of birds and bees. Science 176:1439–1440

    CAS  PubMed  Google Scholar 

  • Dalsgaard B, Martín González AM, Olesen JM, Ollerton J, Timmermann A, Andersen LH, Tossas AG (2009) Plant–hummingbird interactions in the West Indies: floral specialisation gradients associated with environment and hummingbird size. Oecologia 159:757–766

  • Dalsgaard B, Magård E, Fjeldså J, Martín González AM, Rahbek C, Olesen JM, Ollerton J, Alarcón R, Cardoso Araujo A, Cotton PA, Lara C, Machado CG, Sazima I, Sazima M, Timmermann A, Watts S, Sandel B, Sutherland WJ, Svenning J-C (2011) Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and quaternary climate-change velocity. PLoS ONE. doi:10.1371/journal.pone.0025891

    PubMed Central  PubMed  Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. Murray, London

    Google Scholar 

  • Dearborn DC (1998) Interspecific territoriality by a Rufous-tailed Hummingbird (Amazilia tzactl): effects of intruder size and resource value. Biotropica 30:306–313

    Google Scholar 

  • Des Granges JL (1978) Organization of a tropical nectar feeding bird guild in a variable environment. Living Bird 17:199–236

    Google Scholar 

  • Feinsinger P (1976) Organization of a tropical guild of nectarivorous birds. Ecol Monogr 46:257–291

    Google Scholar 

  • Feinsinger P (1983) Coevolution and pollination. In: Futuyma DJ, Slatkin M (eds) Coevolution. Sinauer, Sunderland

    Google Scholar 

  • Feinsinger P, Chaplin SB (1975) On the relationship between wing disc loading and foraging strategy in hummingbirds. Am Nat 109:217–224

    Google Scholar 

  • Feinsinger P, Colwell RK (1978) Community organization among neotropical nectar-feeding birds. Am Zool 18:779–795

    Google Scholar 

  • Feinsinger P, Swarm LA (1982) „Ecological release, “seasonal variation in food supply, and the hummingbird Amazila tobaci on Trinidad and Tobago. Ecology 63:1574–1587

    Google Scholar 

  • Feinsinger P, Colwell RK, Terborgh J, Budd Chaplin S (1979) Elevation and the morphology, flight energetics, and foraging ecology of tropical hummingbirds. Am Nat 113:481–497

    Google Scholar 

  • Feinsinger P, Swarm LA, Wolf JA (1985) Nectar-feeding birds on Trinidad and Tobago: comparison of diverse and depauperate guilds. Ecol Monogr 55:1–28

    Google Scholar 

  • Fenster CB, Armbruster WC, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Google Scholar 

  • Fleming TH, Muchala N (2008) Nectar-feeding bird and bat niches in two worlds: pantropical comparison of vertebrate pollination systems. J Biogeogr 35:764–780

    Google Scholar 

  • Fodgen M, Fodgen P (2006) Hummingbirds of Costa Rica. Firefly, Buffalo

    Google Scholar 

  • Fraser KC, Diamond AW, Chacarria L (2010) Evidence of altitudinal moult-migration in a Central American hummingbird, Amazilia cyanura. J Trop Ecol 26:645–648

    Google Scholar 

  • Gass CL, Montgomerie RD (1981) Hummingbird foraging behaviour: decision-making and energy regulation. In: Kamil A, Sargent T (eds) Foraging behaviour: Ecological, ethological and physiological approaches. Garland STPM, New York, pp 159–196

    Google Scholar 

  • Graham CH, Parra JL, Rahbek C, McGuire JA (2009) Phylogenetic structure in tropical hummingbird communities. Proc Natl Acad Sci USA 106:19673–19678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham CH, Parra JL, Tinoco BA, Stiles FG, McGuire JA (2012) Untangling the influence and evolutionary factors on trait variation across hummingbird assemblages. Ecology 93:99–111

    Google Scholar 

  • Grant KA, Grant V (1968) Hummingbirds and their flowers. Colombia University Press, New York

    Google Scholar 

  • Hainsworth FR, Wolf LL (1972) Crop volume, nectar concentration, and hummingbird energetics. Comp Biochem Physiol Part A 42:359–366

    CAS  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Inter J Climatol 25:1965–1978

    Google Scholar 

  • Hinkelmann C (1990) Importance of ecological factors in hermit hummingbirds (Aves: Trochilinae) biogeography. In: Peters G, Hutterer R (eds) Vertebrates in the tropics. Museum Alexander König, Bonn

    Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34:611–612

    Google Scholar 

  • Johnson MD, Sherry TS (2001) Effects of food availability on the distribution of migratory warblers among habitats in Jamaica. J Anim Ecol 70:546–560

  • Kay KM, Reeves PA, Olmstead RG, Schemske DW (2005) Rapid speciation and the evolution of hummingbird pollination in Neotropical Costus subgenus Costus (Costaceae): evidence from nrDNA ITS and ETS sequences. Am J Bot 92:1899–1910

    CAS  PubMed  Google Scholar 

  • Kessler M, Krömer T (2000) Patterns and ecological correlates of pollination modes among bromeliad communities of Andean forests in Bolivia. Plant Biol 2:659–669

    Google Scholar 

  • Klasing KC (1998) Comparative avian nutrition. CAB International, New York

    Google Scholar 

  • Kodric-Brown A, Brown JH, Byers GS, Gori DF (1984) Organization of a tropical island community of hummingbirds and flowers. Ecology 65:1358–1368

    Google Scholar 

  • Koptur S (2000) Breeding systems of Monteverde Inga. In: Nadkarni NM, Wheelwright NT (eds) Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, New York, pp 85–87

    Google Scholar 

  • Kraemer M, Schmitt U, Schuchmann K-L (1993) Notes on the organization of a neotropical high-altitude hummingbird-flower community. In: Barthlott W, Naumann CM, Schmidt-Loske K, Schuchmann KL (eds) Animal-plant interactions in tropical environments. Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn, pp 61–65

  • Krömer T, Kessler M, Herzog SK (2006) Distribution and flowering ecology of bromeliads along two climatically contrasting elevational transects in the Bolivian Andes. Biotropica 38:183–195

    Google Scholar 

  • Lack D (1973) The number of species of hummingbirds in the West Indies. Evolution 27:326–337

    Google Scholar 

  • Lara C (2006) Temporal dynamics of flower use by hummingbirds in a highland temperate forest in Mexico. Ecoscience 13:23–29

    Google Scholar 

  • Lara C, Lumbreras K, González M (2009) Niche partitioning among hummingbirds foraging on Penstemon roseus (Plantaginaceae) in central Mexico. Ornithol Neotrop 20:81–90

    Google Scholar 

  • Lasprilla LR, Sazima M (2004) Interacciones planta-colibrí en tres comunidades vegetales de la parte suroriental del Parque Nacional Natural Chiribiquetem, Columbia. Ornithol Neotrop 15:183–190

    Google Scholar 

  • Lyon DL (1976) A montane hummingbird territorial system in Oaxaca, Mexico. Wilson Bull 88:280–299

    Google Scholar 

  • Mabberley DJ (2008) Mabberley´s plant book—a portable dictionary of plants, their classification and uses, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Machado CG, Coelho AG, Santana CS, Rodrigues M (2007) Beija-flores e seus recursos florais em uma área de campo rupestre da Chapada Diamantina, Bahia. Rev Bras Ornitol 15:267–279

    Google Scholar 

  • Martinez del Rio C, Eguiarte LE (1987) Bird visitation to Agave salmiana: comparisons among hummingbirds and perching birds. Condor 89:357–363

    Google Scholar 

  • Martinez del Rio C, Karasov WH (1990) Digestion strategies in nectar- and fruit-eating birds and the sugar composition of plant rewards. Am Nat 136:618–637

    Google Scholar 

  • Maruyama PK, Custódio LN, Oliveira PE (2012) When hummingbirds are the thieves: visitation effect on the re production of Neotropical snowbell Styrax ferrugineus Nee and Mart (Styracaceae). Acta Bot Bras 26:58–64

    Google Scholar 

  • McWhorter TJ, Powers DR, Martinez del Rio C (2003) Are hummingbirds facultatively ammonotelic? Nitrogen excretion and requirements as a function of body size. Physiol Biochem Zool 76:731–743

    PubMed  Google Scholar 

  • Mendonça BL, dos Anjos L (2005) Hummingbirds (Aves, Trochilinae) and their flowers in an urban area of southern Brazil. Rev Bras Zool 22:51–59

    Google Scholar 

  • Murphy ME (1996) Nutrition and metabolism. In: Cary C (ed) Avian energetics and nutritional energy. Chapman and Hall, New York, pp 31–60

    Google Scholar 

  • Nicolson SW (2002) Pollination by passerine birds: why are the nectars so dilute? Comp Biochem Physiol Part B 131:645–652

    Google Scholar 

  • Ornelas JF (1994) Serrate tomia: an adaptation for nectar robbing in hummingbirds? Auk 111:703–710

    Google Scholar 

  • Ornelas JF, Ordano M, Hernández A, López JC, Mendoza L, Perroni Y (2002) Nectar oasis produced by Agave marmorata Roezl. (Agavaceae) lead to spatial and temporal segregation among nectarivores tn the Tehuacán Valley Mexico. J Arid Environ 52:37–51

    Google Scholar 

  • Paton DC, Collins BG (1989) Bills and tongues of nectar-feeding birds: a review of morphology, function and performance, with intercontinental comparisons. Austr J Ecol 14:473–506

    Google Scholar 

  • Pelayo RC, Rengifo C, Soriano PJ (2011) Avian nectar robbers of Passiflora mixta (Passifloraceae): do they have a positive effect on the plant? Interciencia 36:587–592

    Google Scholar 

  • Powers DR, McKnee T (1994) The effect of food availability on time and energy expenditures of territorial and non-territorial hummingbirds. Condor 96:1064–1075

    Google Scholar 

  • Powers DR, van Hook JA, Sandlin EA, McWhorter TJ (2010) Arthropod foraging by a southeastern Arizona hummingbird guild. Wilson J Ornithol 122:494–502

    Google Scholar 

  • Primack RB, Howe HF (1975) Interference competition between a hummingbird (Amazilia tzacatl) and skipper butterflies (Hesperidae). Biotropica 7:55–58

    Google Scholar 

  • Rahbek C, Graves GR (2000) Detecting macroecological patterns in South American hummingbirds is affected by special scale. Proc R Soc Lond B 267:2259–2265

    CAS  Google Scholar 

  • Remsen JV, Stiles FG, Scott PE (1986) Frequency of arthropods in stomachs of tropical hummingbirds. Auk 103:436–441

    Google Scholar 

  • Rodrigues LC, Araujo AC (2011) The hummingbird community and their floral resources in an urban forest remnant in Brazil. Braz J Biol 71:611–622

    CAS  PubMed  Google Scholar 

  • Sandlin EA (2000) Foraging information affects the nature of competitive interactions. Oikos 91:18–28

    Google Scholar 

  • Sazima I, Buzato S, Sazima M (1996) An assemblage of hummingbird-pollinated flowers in a montane forest in southeastern Brazil. Bot Acta 109:149–160

    Google Scholar 

  • Schmidt-Lebuhn A, Kessler M, Hensen I (2005) Hummingbirds as drivers of plant speciation? Trends Plant Sci 12:329–331

    Google Scholar 

  • Schuchmann K-L (1999) Family Trochilinae (Hummingbirds). In: Del Hoyo J, Elliot A, Sargatal J (eds) Handbook of the Birds of the World, vol. 5. Lynx Ediciones, Barcelona, pp 468–680

  • Skutch AF (1954) Life histories of Central American birds. Pacific Coast Avifauna 31:1–488

    Google Scholar 

  • Snow BK, Snow DW (1972) Feeding niches of hummingbirds in a Trinidad valley. J Anim Ecol 41:471–485

    Google Scholar 

  • Snow DW, Snow BK (1980) Relationship between hummingbirds and flowers in the Andes if Colombia. Bull Br Mus (Nat Hist) Zool Ser 38:105–139

    Google Scholar 

  • Snow DW, Snow BK (1986) Feeding ecology of hummingbirds in the Serra do Mar, southeastern Brazil. El Hornero 12:286–296

    Google Scholar 

  • Snow DW, Teixera D (1982) Hummingbirds and their flowers in the costal mountains of SE Brazil. J Ornithol 123:446–450

    Google Scholar 

  • Stein BA (1992) Sicklebill hummingbirds, ants, and flowers. Bioscience 42:27–33

    Google Scholar 

  • Stiles FG (1973) Food supply and the annual cycle of the Anna hummingbird. University of California Press, Berkeley

    Google Scholar 

  • Stiles FG (1978) Temporal organization of flowering among the hummingbird foodplants of a tropical wet forest. Biotropica 10:194–210

    Google Scholar 

  • Stiles FG (1980) The annual cycle in a tropical wet forest hummingbird community. Ibis 122:322–343

    Google Scholar 

  • Stiles FG (1981) Geographical aspects of bird-flower coevolution, with particular reference to Central America. Ann Miss Bot Gar 68:323–351

    Google Scholar 

  • Stiles FG (1985) Seasonal patterns and co-evolution in the hummingbird-flower community of a Costa Rica subtropical rainforest. Ornithol Monogr 36:757–787

    Google Scholar 

  • Stiles FG (1995) Behavioral, ecological and morphological correlations of foraging for arthropods by the hummingbirds of a tropical wet forest. Condor 97:853–878

    Google Scholar 

  • Stiles FG (2004) Phylogenetic constraints upon morphological and ecological adaptations in hummingbirds (Trochilidae): why are there no hermits in the Paramo? Ornithol Neotrop 15:191–198

    Google Scholar 

  • Stiles FG (2008) Ecomorphology and phylogeny of hummingbirds: divergence and convergence in adaptations to high elevations. Ornithol Neotrop 19:511–519

    Google Scholar 

  • Stiles FG, Freeman CE (1993) Patterns in floral nectar characteristics of some bird-visited plant-species from Costa Rica. Biotropica 25:191–205

    Google Scholar 

  • Stiles FG, Wolf LL (1969) Female territoriality in a tropical hummingbird. Auk 86:490–504

    Google Scholar 

  • Sun BY, Stuessy TF, Humana AM, Riveros MG, Crawford DJ (1996) Evolution of Rhaphithamnus venustus (Verbenaceae), a gynodioecious hummingbird-pollinated endemic of the Juan Fernandez Islands, Chile. Pacific Sci 50:55–65

    Google Scholar 

  • Tamm S, Gass CL (1986) Energy intake rates and nectar concentration preferences by hummingbirds. Oecologia 70:20–23

    Google Scholar 

  • Temeles EJ (1996) A new dimension to hummingbird: flower relationships. Oecologia 105:517–523

    Google Scholar 

  • Temeles EJ, Kress WJ (2003) Adaptations in a plant-hummingbird association. Science 300:630–633

    CAS  PubMed  Google Scholar 

  • Temeles EJ, Kress WJ (2010) Mate choice and mate competition by a tropical hummingbird at a floral resource. Proc R Soc Lond B 277:1607–1613

    Google Scholar 

  • Temeles EJ, Linhart YB, Masonjones M, Masonjones HD (2002) The role of flower width in hummingbird bill length-flower length relationships. Biotropica 34:68–80

    Google Scholar 

  • Temeles J, Goldman RS, Kudla AU (2005) Foraging and territory economics of sexually dimorphic Purple-throated Caribs (Eulampis jugularis) on three Heliconia morphs. Auk 122:187–204

    Google Scholar 

  • Temeles EJ, Koulouris CR, Sander SE, Kress WJ (2009) Effects of flower shape and size on foraging performance and trade-offs in a hummingbird. Ecology 90:1147–1161

    PubMed  Google Scholar 

  • Temeles EJ, Miller JS, Rifkin JL (2010) Evolution of sexual dimorphism in bill size and shape of hermit hummingbirds (Phaethornithinae): a role for ecological causation. Philos Trans R Soc Lond B 365:1053–1063

    Google Scholar 

  • Thompson JN (1999) Specific hypotheses on the geographic mosaic of coevolution. Am Nat 153:1–14

    Google Scholar 

  • Tripp EA, McDade LA (2013) Time-calibrated phylogenies of hummingbirds and hummingbird-pollinated plants reject a hypothesis of diffuse co-evolution. Aliso 31:89–103

    Google Scholar 

  • Turchin P, Batzli GO (2001) Availability of food and the population dynamics of arvicoline rodents. Ecology 82:1521–1534

    Google Scholar 

  • Vasconcelos MF, Lombardi JA (2001) Hummingbirds, their flowers in the campos rupestres of southern Espinhaço Range, Brazil. Melopsittacus 4:3–30

    Google Scholar 

  • Wagner HO (1946) Food and feeding habits of Mexican hummingbirds. Wilson Bull 58:69–82

    Google Scholar 

  • Wallace AR (1891) Tropical nature and other essays. Macmillan, London

    Google Scholar 

  • Walther BA, Brieschke H (2001) Hummingbird-flower relationships in a mid-elevation rainforest near Mindo, northwestern Ecuador. Int J Ornithol 4:115–135

    Google Scholar 

  • Weis-Fogh T (1972) Energetics of hovering flight in hummingbirds and in Drosophila. J Exp Biol 56:79–104

    Google Scholar 

  • Wheeler TG (1980) Experiments in feeding behavior of the Anna hummingbird. Wilson Bull 92:53–62

    Google Scholar 

  • Williamson SL (2001) Hummingbirds of North America. Houghton Mifflin, Boston

    Google Scholar 

  • Wolf LL (1970) The impact of seasonal flowering on the biology of some tropical hummingbirds. Condor 72:1–14

    Google Scholar 

  • Wolf LL, Stiles FG, Hainsworth FR (1976) Ecological organization of a tropical, highland hummingbird community. J Anim Ecol 45:349–380

    Google Scholar 

  • Yanega GM (2007) On the necessity and maintenance of insectivory in the hummingbird diet. Ph.D. thesis, University of Connecticut

Download references

Acknowledgments

We thank Elena Benetti and Martin Spinnler for their help during literature collection, Andreas Fleischmann, Andreas Gröger and Urs Eggli for their comments on our list of genera containing hummingbird-pollinated species, Eliane Furrer for her support, and Gary F. Stiles and the other anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Abrahamczyk.

Additional information

Communicated by C. G. Guglielmo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahamczyk, S., Kessler, M. Morphological and behavioural adaptations to feed on nectar: how feeding ecology determines the diversity and composition of hummingbird assemblages. J Ornithol 156, 333–347 (2015). https://doi.org/10.1007/s10336-014-1146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1146-5

Keywords

Navigation