Skip to main content
Log in

Fuel stores, time of spring, and movement behavior influence stopover duration of Red-eyed Vireo Vireo olivaceus

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Long-distance migration is characterized by periods of flight, when energy stores are consumed, and periods of stopover, when energy stores are replenished. The duration of the migratory period is largely determined by time spent at stopover sites. The time constraints imposed on spring migrants should act to minimize the time spent on migration, yet spring migrants often remain at stopover sites for extended periods. We measured the influence of arrival fuel stores, arrival date, and foraging movement rate on the duration of Red-eyed Vireos (Vireo olivaceus) that remained at stopover sites for more than 1 day. We captured spring migrants in mist-nets as they arrived after crossing the Gulf of Mexico. We released them at an inland site and continuously followed (radio-tracked) their movements until departure. Departure time was confirmed with extensive ground searches and aerial surveys. Migrants remained at the stopover sites from 1 to 8 days (2.80 ± 0.14 days). Less than one-third of migrants were transient, leaving the night following release (32 %). Of the migrants that remained more than 1 day, those that arrived with low fuel stores remained longer than those that arrived with more fuel stores. Only migrants arriving early in the spring stayed for extended periods of time (>5 days). Further, migrants that moved faster within the stopover landscape presumably replenished fuel stores faster because they did not remain as long as migrants that did not move as quickly. When arrival fuel stores, arrival day, and departure day were known, we found multiple factors influenced the length of stay at spring stopover sites. Early spring migrants with low fuel stores that moved slowly through the landscape spent the most time at spring stopover sites.

Zusammenfassung

Energiereserven, Frühjahrszeitpunkt und Bewegungsverhalten beeinflussen die Rastdauer beim Rotaugenvireo Vireo olivaceus

Der Langstreckenzug ist gekennzeichnet durch Flugphasen, in denen Energiereserven verbraucht werden, und durch Rastphasen, in denen diese Energiereserven wieder aufgefüllt werden. Die Gesamtlänge der Zugperiode wird zum großen Teil durch die Aufenthaltsdauer an den Rastplätzen bestimmt. Die zeitlichen Zwänge beim Frühjahrszug sollten eine Minimierung der Zugdauer bewirken; trotzdem verweilen Vögel auf dem Frühjahrszug oft längerfristig in den Rastgebieten. Wir bestimmten den Einfluss der Energiereserven bei Ankunft, des Ankunftsdatums und der Bewegungsmuster auf die Verweildauer von Rotaugenvireos (Vireo olivaceus), die sich länger als einen Tag im Rastgebiet aufhielten. Dazu fingen wir die Vögel auf dem Frühjahrszug mit Japannetzen bei ihrer Ankunft nach der Überquerung des Golfs von Mexiko. Danach ließen wir sie im Binnenland wieder frei und verfolgten ihre Bewegungen per Radiotelemetrie kontinuierlich bis zum Weiterflug. Der Abflugzeitpunkt wurde durch weiträumige Suche am Boden sowie durch Lufterkundung bestätigt. Die Zugvögel verweilten zwischen einem und acht Tagen (2.80 ± 0.14 Tage) in den Rastgebieten. Weniger als ein Drittel der Vögel waren Durchzügler, die bereits in der auf die Freilassung folgenden Nacht weiterflogen (32 %). Von den Zugvögeln, die sich länger als einen Tag aufhielten, blieben diejenigen, welche mit geringeren Energiereserven angekommen waren, länger als die, welche mit mehr Energiereserven eintrafen. Nur Zugvögel, welche im zeitigen Frühjahr ankamen, hielten sich über einen längeren Zeitraum (>fünf Tage) auf. Des Weiteren füllten Zugvögel, die sich in der Landschaft des Rastgebiets schneller bewegten, ihre Energiereserven vermutlich auch rascher wieder auf, da sie nicht so lange verweilten, wie Zugvögel, die sich weniger schnell bewegten. Waren die Energiereserven bei Ankunft, das Ankunftsdatum und der Abflugtag bekannt, fanden wir mehrere Faktoren, welche die Aufenthaltsdauer in den Frühjahrsrastgebieten beeinflussten. Zugvögel zu Beginn des Frühjahrs, die geringe Energiereserven hatten und sich langsam in der Landschaft bewegten, verbrachten somit die längste Zeit in den Frühjahrsrastgebieten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akesson S, Hedenström A (2000) Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol 47:140–144

    Google Scholar 

  • Alerstam T (2003) Bird migration speed. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 253–267

    Google Scholar 

  • Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner PDE (ed) Bird migration. Springer, Berlin, pp 331–351

    Google Scholar 

  • Arizaga J, Barba E, Belda EJ (2008) Fuel management and stopover duration of Blackcaps Sylvia atricapilla stopping over in northern Spain during autumn migration period: capsule fuel load is correlated with fuel deposition rate; stopover duration is affected by arrival fuel load. Bird Study 55:124–134

    Google Scholar 

  • Arizaga J, Sánchez JM, Díez E et al (2011) Fuel load and potential flight ranges of passerine birds migrating through the western edge of the Pyrenees. Acta Ornithol 46:19–28

    Google Scholar 

  • Bächler E, Schaub M (2007) The effects of permanent local emigration and encounter technique on stopover duration estimates as revealed by telemetry and mark-recapture. Condor 109:142–154

    Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID et al (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Google Scholar 

  • Bates D, Maechler M, Bolker B (2012) lme4: Linear mixed-effects models using S4 classes, 2011. http://CRAN.R-project.org/package=lme4. R Package version 0.999375-42

  • Bolshakov CV, Chernetsov N, Mukhin A et al (2007) Time of nocturnal departures in European robins, (Erithacus rubecula), in relation to celestial cues, season, stopover duration and fat stores. Anim Behav 74:855–865

    Google Scholar 

  • Buler JJ, Moore FR (2011) Migrant–habitat relationships during stopover along an ecological barrier: extrinsic constraints and conservation implications. J Ornithol 152:101–112

    Google Scholar 

  • Callo PA, Morton ES, Stutchbury BJM (2013) Prolonged spring migration in the red-eyed vireo (Vireo olivaceus). Auk 130:240–246. doi:10.1525/auk.2013.12213

    Google Scholar 

  • Calvert AM, Taylor PD, Walde S (2009) Cross-scale environmental influences on migratory stopover behaviour. Glob Change Biol 15:744–759. doi:10.1111/j.1365-2486.2008.01733.x

    Google Scholar 

  • Chernetsov N (2012) Stopover Duration. Passerine Migration. Springer, Berlin, pp 13–35

    Google Scholar 

  • Choquet R, Guédon Y, Besnard A et al (2013) Estimating stop over duration in the presence of trap-effects. Ecol Model 250:111–118. doi:10.1016/j.ecolmodel.2012.11.002

    Google Scholar 

  • Cimprich DA, Morse RR, Guilfoyle MP (2000) Red-eyed Vireo (Vireo olivaceus). The birds of North America 24. In: Poole A (ed) The Birds of North America. Cornell Laboratory of Ornithology, Ithaca

  • Cohen EB, Moore FR, Fischer RA (2012) Experimental evidence for the interplay of exogenous and endogenous factors on the movement ecology of a migrating songbird. PLoS ONE 7:e41818. doi:10.1371/journal.pone.0041818

  • Cohen EB, Pearson SM, Moore FR (2014a) Effects of landscape composition and configuration on migrating songbirds: inference from an individual-based model. Ecol Appl 24:169–180. doi:10.1890/12-1867.1

    PubMed  Google Scholar 

  • Cohen EB, Németh Z, Zenzal TJ Jr., Paxton K, Diehl R, Paxton EH, Moore FR (2014b) Spring resource phenology and timing of songbird migration across the Gulf of Mexico. Stud Avian Biol (in press)

  • Delmore KE, Fox JW, Irwin DE (2012) Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proc R Soc Lond B 279:4582–4589. doi:10.1098/rspb.2012.1229

    Google Scholar 

  • Dierschke V, Delingat J (2001) Stopover behaviour and departure decision of Northern Wheatears, Oenanthe oenanthe, facing different onward non-stop flight distances. Behav Ecol Sociobiol 50:535–545. doi:10.2307/4602003

    Google Scholar 

  • Eikenaar C, Bairlein F (2014) Food availability and fuel loss predict Zugunruhe. J Ornithol 155:65–70. doi:10.1007/s10336-013-0987-7

    Google Scholar 

  • Fischer RA, Gauthreaux SA Jr, Valente JJ et al (2012) Comparing transect survey and WSR-88D radar methods for monitoring daily changes in stopover migrant communities. J Field Ornithol 83:61–72

    Google Scholar 

  • Gauthreaux SA (1971) A radar and direct visual study of Passerine spring migration in southern Louisiana. Auk 88:343–365. doi:10.2307/4083884

    Google Scholar 

  • Gauthreaux SA (1972) Behavioral responses of migrating birds to daylight and darkness: a radar and direct visual study. Wilson Bull 84:136–148. doi:10.2307/4160190

    Google Scholar 

  • Gauthreaux Jr SA, Belser CG, Van Blaricom D et al (2003) Using a network of WSR-88D weather surveillance radars to define patterns of bird migration at large spatial scales. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 335–346

  • Goymann W, Spina F, Ferri A, Fusani L (2010) Body fat influences departure from stopover sites in migratory birds: evidence from whole-island telemetry. Biol Lett 6:478–481

    PubMed  PubMed Central  Google Scholar 

  • Hedenström A, Alerstam T (1997) Optimum fuel loads in migratory birds: distinguishing between time and energy minimization. J Theor Biol 189:227–234. doi:10.1006/jtbi.1997.0505

    Google Scholar 

  • Helms CW, Drury WH (1960) Winter and migratory weight and fat field studies on some North American buntings. Bird-band 31:1–40

    Google Scholar 

  • Hurlbert AH, Liang Z (2012) Spatiotemporal variation in Avian migration phenology: citizen science reveals effects of climate change. PLoS ONE 7:e31662. doi:10.1371/journal.pone.0031662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keddy PA (2009) Thinking big: a conservation vision for the southeastern coastal plain of North America. Southeast Nat 8:213–226. doi:10.1656/058.008.0202

    Google Scholar 

  • Kuenzi AJ, Moore FR, Simons TR (1991) Stopover of neotropical landbird migrants on East Ship Island following trans-Gulf migration. Condor 869–883

  • Lindström A (1991) Maximum fat deposition rates in migrating birds. Ornis Scand 12–19

  • Loria DE, Moore FR (1990) Energy demands of migration on red-eyed vireos, Vireo olivaceus. Behav Ecol 1:24–35

    Google Scholar 

  • Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142:307–315

    PubMed  Google Scholar 

  • Matthews SN, Rodewald PG (2010) Urban forest patches and stopover duration of migratory Swainson’s Thrushes. Condor 112:96–104. doi:10.1525/cond.2010.090049

    Google Scholar 

  • Mills AM, Thurber BG, Mackenzie SA, Taylor PD (2011) Passerines use nocturnal flights for landscape-scale movements during migration stopover. Condor 113:597–607

    Google Scholar 

  • Moore FR, Aborn DA (2000) Mechanisms of en route habitat selection: how do migrants make habitat decisions during stopover? Stud Avian Biol 34–42

  • Moore F, Kerlinger P (1987) Stopover and fat deposition by North American wood-warblers (Parulinae) following spring migration over the Gulf of Mexico. Oecologia 74:47–54

    CAS  PubMed  Google Scholar 

  • Moore FR, Simons TR (1992) Habitat suitability and stopover ecology of Neotropical landbird migrants. In: Hagan J, Johnston D (eds) Ecology and conservation of Neotropical migrant landbirds. Smithsonian Institution Press, Washington, pp 345–355

    Google Scholar 

  • Moore FR, Kerlinger P, Simons TR (1990) Stopover on a Gulf coast barrier island by spring trans-Gulf migrants. Wilson Bull 102:487–500

    Google Scholar 

  • Moore FR, Mabey S, Woodrey M (2003) Priority access to food in migratory birds: age, sex and motivational asymmetries. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 281–291

  • Morbey YE, Coppack T, Pulido F (2012) Adaptive hypotheses for protandry in arrival to breeding areas: a review of models and empirical tests. J Ornithol 153:207–215

    Google Scholar 

  • Piersma T, Cadée N, Daan S (1995) Seasonality in basal metabolic rate and thermal conductance in a long-distance migrant shorebird, the knot (Calidris canutus). J Comp Physiol B 165:37–45

    Google Scholar 

  • Pyle P (1997) Identification guide to North American birds: Part I Columbidae to Ploceidae. Slate Creek, Bolinas

    Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rappole JH, Warner DW (1976) Relationships between behavior, physiology and weather in avian transients at a migration stopover site. Oecologia 26:193–212

    PubMed  Google Scholar 

  • Salewski V, Schaub M (2007) Stopover duration of Palearctic passerine migrants in the western Sahara—independent of fat stores? Ibis 149:223–236

    Google Scholar 

  • Salewski V, Thoma M, Schaub M (2007) Stopover of migrating birds: simultaneous analysis of different marking methods enhances the power of capture–recapture analyses. J Ornithol 148:29–37

    Google Scholar 

  • Schaub M, Jenni L, Bairlein F (2008) Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site. Behav Ecol 19:657–666

    Google Scholar 

  • Schmaljohann H, Dierschke V (2005) Optimal bird migration and predation risk: a field experiment with northern wheatears Oenanthe oenanthe. J Anim Ecol 74:131–138. doi:10.1111/j.1365-2656.2004.00905.x

    Google Scholar 

  • Seewagen CL, Guglielmo CG (2010) Effects of fat and lean body mass on migratory landbird stopover duration. Wilson J Ornithol 122:82–87

    Google Scholar 

  • Seewagen CL, Slayton EJ, Guglielmo CG (2010) Passerine migrant stopover duration and spatial behaviour at an urban stopover site. Acta Oecol 36:484–492

    Google Scholar 

  • Seewagen CL, Guglielmo CG, Morbey YE (2013) Stopover refueling rate underlies protandry and seasonal variation in migration timing of songbirds. Behav Ecol 24:634–642. doi:10.1093/beheco/ars225

    Google Scholar 

  • Smith RJ, Moore FR (2005) Arrival timing and seasonal reproductive performance in a long-distance migratory landbird. Behav Ecol Sociobiol 57:231–239

    Google Scholar 

  • Taylor PD, Mackenzie SA, Thurber BG et al (2011) Landscape movements of migratory birds and bats reveal an expanded scale of stopover. PLoS ONE 6:e27054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tøttrup AP, Rainio K, Coppack T et al (2010) Local temperature fine-tunes the timing of spring migration in birds. Integr Comp Biol 50:293–304

    PubMed  Google Scholar 

  • Tsvey A, Bulyuk VN, Kosarev V (2007) Influence of body condition and weather on departures of first-year European robins, Erithacus rubecula, from an autumn migratory stopover site. Behav Ecol Sociobiol 61:1665–1674

    Google Scholar 

  • Yong W, Moore FR (1993) Relation between migratory activity and energetic condition among thrushes (Turdinae) following passage across the Gulf of Mexico. Condor 934–943

  • Yong W, Moore FR (1997) Spring stopover of intercontinental migratory thrushes along the northern coast of the Gulf of Mexico. Auk 114:263–278

    Google Scholar 

  • Yong W, Moore FR (2005) Long-distance bird migrants adjust their foraging behaviour in relation to energy stores. Acta Zool Sin 51:12–23

    Google Scholar 

  • Yong W, Finch DM, Moore FR, Kelly JF (1998) Stopover ecology and habitat use of migratory Wilson’s warblers. Auk 115:829–842

    Google Scholar 

  • Zuur AF, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer, New York

Download references

Acknowledgments

Logistical support was provided by J. Johnson and D. Hudson at Fort Polk and L. Bennett at Louisiana Wildlife and Fisheries. We would especially like to thank the members of the migratory bird research group at USM and all of the hard-working assistants who helped us collect data in the field. Funding for this project was provided by the US Department of Defense Strategic Environmental Research and Development Program and the University of Southern Mississippi. This study was conducted in full compliance with the laws of the United States of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily B. Cohen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, E.B., Moore, F.R. & Fischer, R.A. Fuel stores, time of spring, and movement behavior influence stopover duration of Red-eyed Vireo Vireo olivaceus . J Ornithol 155, 785–792 (2014). https://doi.org/10.1007/s10336-014-1067-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1067-3

Keywords

Navigation