Skip to main content

Advertisement

Log in

Suitable, reachable but not colonised: seasonal niche duality in an endemic mountainous songbird

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The realized distribution of animals is often delimited by climatic factors which define, next to the specific habitat and food availability, their species-specific potential distribution. We studied the environmental limitations affecting the realized breeding and wintering distributions of the Citril Finch (Carduelis citrinella), one of the few endemic bird species of European mountain ranges. To assess the environmental limits that shape the seasonal distribution, we used species distribution models (SDMs) derived from macroclimate in combination with land cover information. Our data suggest a high congruence between the potential modelled breeding distribution of the Citril Finch and the currently known breeding sites, indicating a high level of niche filling. The unusual absence in several suitable breeding habitats at the eastern and northern range limit (Eastern Alps, Carpathians, Bavarian Forest, Harz Mountains, Fichtelgebirge, Krkonoše Mountains) is likely linked to a combination of both missing resources and restricted physiological migration capacities from the available wintering grounds. Since the accomplished migratory distances hardly exceed more than 500 km, it seems likely that the distance to the main wintering areas is too large for exceeding eastern and northern range limits. We discuss the differences in SDM outcomes when including distal predictor variables instead of using proximal predictors alone, and highlight the importance of considering a seasonal niche duality to gain more insights into complex range effects in species with seasonal ranges.

Zusammenfassung

Geeignet, erreichbar aber unbesiedelt: saisonale Nischendualität bei einem endemischen Singvogel europäischer Gebirgsregionen

Die realisierte Verbreitung von Arten wird oft durch klimatische Faktoren begrenzt, die gemeinsam mit dem charakteristischen Habitat und der Nahrungsverfügbarkeit die artspezifische potentielle Verbreitung definiert. In dieser Studie untersuchten wir die umweltbedingten Faktoren, welche das Brut- und Winterareal des Zitronenzeisigs (Carduelis citrinella) limitieren. Um die begrenzenden Faktoren der saisonalen Verbreitungen zu quantifizieren, nutzten wir Artverbreitungsmodelle basierend auf bioklimatischen Variablen in Kombination mit Landnutzungsinformationen. Die Ergebnisse zeigten eine hohe Übereinstimmung der modellierten potentiellen Verbreitung mit der derzeitig bekannten Verbreitung der Art, was auf einen hohen Grad an Nischenfüllung („niche filling“) schließen lässt. Klimatisch geeignete, jedoch unbesiedelte Brutgebiete entlang des nördlich und östlich gelegenen Arealrandes (östliche Alpen, Karpaten, Bayerischer Wald, Harz, Fichtel- und Riesengebirge) sind höchstwahrscheinlich durch eine Kombination aus fehlenden Ressourcen einerseits und begrenzter physiologischer Migrationsleistung andererseits zu erklären. Da die bekannten Zugdistanzen nur selten weiter als 500 km reichen, ist es sehr wahrscheinlich, dass die Entfernung dieser Gebiete im Norden und im Osten zu den Hauptüberwinterungsgebieten zu groß ist. Wir diskutieren die Unterschiede in den Modellresultaten zwischen einer Prädiktorauswahl, die auch distale Prädiktorvariablen beeinhaltet, und einer mit rein proximalen Variablen. Wir unterstreichen, dass die Berücksichtigung der saisonalen Nischendualität zusätzliche Einsichten in komplexe Arealeffekte bei Arten mit saisonalen Verbreitungen gewährt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso D, Arizaga J (2004) El verderón serrano (Serinus citrinella) en Navarra: parámetros fenológicos y movimientos migratorios. Munibe 55:95–112

    Google Scholar 

  • Anderberg A, Anderberg AL (1997) Den virtuella floran. Naturhistoriska riksmuseet. http://linnaeus.nrm.se/flora/di/lamia/teucr/teucscav.jpg

  • Araújo MB, Pearson RG (2005) Equilibrium of species’ distributions with climate. Ecography 28:693–695

    Google Scholar 

  • Araújo MB, Cabeza M, Thullier W, Hannah L, Williams PH (2004) Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Glob Change Biol 10:1618–1626

    Google Scholar 

  • Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Mod 157:101–118

    Google Scholar 

  • Aymí R, Tomàs X (2003) Balanc de les activitats d’anellament cientific d’ocells realitazades per L’insitut Català d’Ornitologia durant er periode 2000–2002. Rev Catalana Ornitol 20:108

    Google Scholar 

  • Baccetti N, Märki H (1997) Citril finch. In: Hagemeijer WJM, Blair MJ (eds) The EBCC atlas of European breeding birds: their distribution and abundance. Poyser, London

    Google Scholar 

  • Baldwin RA (2009) Use of maximum entropy modeling in wildlife research. Entropy 11:854–866

    Google Scholar 

  • Bauer HG, Boschert M, Hölzinger J (1995) Atlas der Winterverbreitung der Vögel Baden-Württembergs. In: Hölzinger J (ed) Die Avifauna Baden-Württembergs, vol 5. Ulmer, Stuttgart

    Google Scholar 

  • Benoit F, Märki H (2004) Premières données sur l’aire de reproduction et la distribution hivernale du Venturon montagnard Serinus citrinella au nord des Pyrénées. Nos Oiseaux 33:322–323

    Google Scholar 

  • Bensch S (1999) Is the range size of birds constrained by their migratory program? J Biogeogr 26:1225–1236

    Google Scholar 

  • Berlit T (2005) Brutkartierung des Zitronengirlitz (Serinus citrinella) in den Gebirgswäldern des Oberengadin und des oberen Puschlav (Schweiz). Diploma thesis, Westfälische Wilhelms-Universität Münster

  • Bernis F, Bernis C (1963) Breve comentario sobre la invernada de aves en la Cuenca del Ebro (enero 1962). Ardeola 8:228–231

    Google Scholar 

  • Bocca M, Maffei G (1984) Gli uccelli della valle d’Aosta. Tipografia la Vallée, Aosta

  • Borras A, Senar JC (2013) Verderón Serrano Serinus citrinella. In: Martí R, Del Moral JC (eds) Atlas De Las Aves En Invierno En España 2007–2010. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, Madrid

  • Borras A, Blache S, Cabrera J, Cabrera T, Senar JC (2005) Citril Finch (Serinus citrinella) populations at the north of the Pyrenees may winter in the northeast of the Iberian Peninsula. Aves 42:261–265

    Google Scholar 

  • Borras A, Cabrera J, Colome X, Cabrera T, Senar JC (2010) Citril Finches during the winter: patterns of distribution, the role of pines and implications for the conservation of the species. Anim Biodivers Conserv 33:89–115

    Google Scholar 

  • Brambilla M, Ficetola GF (2012) Species distribution models as a tool to estimate reproductive parameters: a case study with a passerine bird species. J Anim Ecol 81:781–787

    PubMed  Google Scholar 

  • Brambilla M, Falco R, Negri I (2012) A spatially explicit assessment of within-season changes in environmental suitability for farmland birds along an altitudinal gradient. Anim Conserv 15:638–647

    Google Scholar 

  • Brambilla M, Bassi E, Bergero V, Casale F, Chemollo M, Falco R, Longoni V, Saporetti F, Vigano E, Vitulano S (2013) Modelling distribution and potential overlap between Boreal Owl Aegolius funereus and Black Woodpecker Dryocopus martius: implications for management and monitoring plans. Bird Conserv Int. doi:10.1017/S0959270913000117

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 25:1187–1201

    Google Scholar 

  • Case TJ, Holt RD, McPeek MA, Keitt TH (2005) The community context of species’ borders: ecological and evolutionary perspectives. Oikos 108:28–46

    Google Scholar 

  • Chan LM, Brown JL, Yoder AD (2011) Integrating statistical genetic and geospatial methods bring new power to phylogeography. Mol Phyl Evol 59:523–537

    Google Scholar 

  • Cheddadi R, Vendramin GG, Litt T, François L, Kageyama M, Lorentz S, Laurent J-M, de Beaulieu J-L, Sadori L, Jost A, Lunt D (2006) Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob Ecol Biogeogr 15:271–282

    Google Scholar 

  • Cramp S, Perrins CM (1994) The birds of the Western Palearctic, vol VIII, Crows to finches. Oxford University Press, Oxford

  • De Grousaz G, Lebreton P (1963) Notes sur la migration du Venturon montagnard (Carduelis citrinella L.) aux cols de Cou-Bretolet, et sur son hivernage en Suisee et en France. Nos Oiseaux 27:46–61

    Google Scholar 

  • Dejonghe JF (1991) Venturon montagnard Serinus citrinella. In: Yeatman-Berthelot D (ed) Atlas des oiseaux de France en hiver. Société Ornithologique de France, Paris, pp 462–463

  • Dormann CF, McPherson J, Araújo MB, Bivand R, Bollinger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628

    Google Scholar 

  • Dvorak M, Ranner A, Berg HM (1993) Atlas der Brutvögel Österreichs. Ergebnisse der Brutvogelkartierung 1981–1985 der Österreichischen Gesellschaft für Vogelkunde. Umweltbundesamt

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explaination of MaxEnt for ecologists. Divers Distrib 17:43–57

    Google Scholar 

  • Feldner J, Rass P (1999) Zwei neue Brutvogelarten für Kärnten: Zwergschnäpper (Ficedula parva) und Zitronengirlitz (Serinus citrinella). Carinthia II 189(109):241–246

    Google Scholar 

  • Ficetola GF, Thuiller W, Miaud C (2007) Prediction and validation of the potential global distribution of a problematic alien invasive species: the American bullfrog. Divers Distrib 13:476–485

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Fornasari L, Carabela M, Corti W, Pianezza F (1998) Autumn movements of Citril Finches Serinus citrinella in the southern Alps. Ring Migr 19:23–29

    Google Scholar 

  • Förschler MI (1997) Zum Wintervorkommen 1995/1996 des Zitronengirlitzes Serinus citrinella in den Hochlagen des Nordschwarzwaldes. Naturkundl Beob Kreis Freudenstadt 2:24

    Google Scholar 

  • Förschler MI (2001) Witterungsbedingte Ausweichbewegungen des Zitronengirlitzes Serinus citrinella im Nordschwarzwald. Ornithol Beob 98:209–214

    Google Scholar 

  • Förschler MI (2006) Absence of insular density inflation in Corsican Finches Carduelis [citrinella] corsicanus. Acta Ornithol 41:171–174

    Google Scholar 

  • Förschler MI (2007) Seasonal variation in the diet of Citril Finches Carduelis citrinella: are they specialist or generalists? Eur J Wildl Res 53:190–194

    Google Scholar 

  • Förschler MI, Kalko EKV (2006a) Macrogeographic variations in food choice of mainland Citril Finches Carduelis [citrinella] citrinella versus insular Corsican (Citril) Finches Carduelis [citrinella] corsicanus. J Ornithol 147:441–447

    Google Scholar 

  • Förschler MI, Kalko EKV (2006b) Breeding ecology and nest site selection in allopatric mainland Citril Finches Carduelis [citrinella] citrinella and insular Corsican Finches Carduelis [citrinella] corsicanus. J Ornithol 147:553–564

    Google Scholar 

  • Förschler MI, Senar JC, Perret P, Björklund M (2009) The species status of the Corsican finch Carduelis corsicana assessed by three genetic markers with different rates of evolution. Mol Phyl Evol 52:234–240

    Google Scholar 

  • Förschler MI, Shaw DN, Bairlein F (2011) Deuterium analysis reveals potential origin of the Fair Isle Citril Finch Carduelis citrinella. Bull BOC 131:189–191

    Google Scholar 

  • Fortin MJ, Keitt TH, Maurer BA, Taper ML, Kaufmann DM, Blackburn TM (2005) Species’ geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos 108:7–17

    Google Scholar 

  • Fourcade Y, Engler JO, Besnard AG, Rödder D, Secondi J (2013) Confronting expert-based and modelled distributions for species with uncertain conservation status: a case study from the corncrake (Crex crex). Biol Conserv 167:161–171

    Google Scholar 

  • Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford

    Google Scholar 

  • Geister I (1983) European news. Brit Birds 76:276

    Google Scholar 

  • Geister I (1995) Ornitološki atlas Slovenije. Razširjenost gnezdilk. DZS

  • Génard M, Lescourret F (1987) Organisation du peuplement avien d’une foret des Pyrenees orientales françaises. Le Gerfaut 77:463–476

    Google Scholar 

  • Glutz von Blotzheim UN, Bauer KM (1997) Handbuch der Vögel Mitteleuropas Band 14. Aula, Wiebelsheim, pp 501–532

  • Godsoe W (2010) I can’t define the niche but I know it when I see it: a formal link between statistical theory and the ecological niche. Oikos 119:53–60

    Google Scholar 

  • Gorman ML (1979) Island ecology. Chapman and Hall, London

    Google Scholar 

  • Gregori J (1977) Ekološki in favnistični pregeld ptičev severozahodne Slovenije. Larus 29–30:70

    Google Scholar 

  • Grinnell J (1917) Field tests of theories concerning distributional control. Am Nat 51:115–128

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distributions: offering more than simple habitat models. Ecol Lett 8:993–1003

    Google Scholar 

  • Heikkinen RK, Luoto M, Araújo MB, Virkkala R, Thullier W, Sykes MT (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Google Scholar 

  • Heuck C, Brandl R, Albrecht J, Gottschalk T (2013) The potential distribution of the red kite in Germany. J Ornithol 154:911–921

    Google Scholar 

  • Hijmans RJ, Cruz JM, Rojas E, Guarino L (2001) DIVA–GIS, version 1.4. A geographic information system for the management and analysis of genetic resources data. Manual. International Potato Center and International Plant Genetic Resources Institute

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Holt RD, Keitt TH (2005) Species’ borders: a unifying theme in ecology. Oikos 108:3–6

    Google Scholar 

  • Hölzinger J, Dorka V (1997) Zitronengirlitz. In: Hölzinger J (ed) Die Vögel Baden-Württembergs. Band 3.2. Eugen Ulmer, Stuttgart, pp 584–603

  • Huggett RJ (2004) Fundamentals of Biogeography, 2nd edn. Routledge, London

    Google Scholar 

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427

    Google Scholar 

  • Hutchinson GE (1978) An introduction to population ecology. Yale University Press, New Haven

    Google Scholar 

  • Hyndman T (2008) The Citril Finch on Fair Isle: a new British bird. Bird World 21:243–249

    Google Scholar 

  • Jakob SS, Heibl C, Rödder D, Blattner FR (2010) Population demography influences climatic niche evolution: evidence from diploid American Hordeum species (Poaceae). Mol Ecol 19:1423–1438

    PubMed  Google Scholar 

  • Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630

    Google Scholar 

  • Jiguet F, Barbet-Massin M, Chevallier D (2011) Predictive distribution models applied to satellite tracks: modelling the western African winter range of European migrant Black Storks Ciconia nigra. J Ornithol 152:111–118

    Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187–200

    Google Scholar 

  • Keller FC (1890) Ornis Carinthiae. Kleinmayr, Klagenfurt

    Google Scholar 

  • Kozak KH, Wiens JJ (2007) Climatic zonation drives latitudinal variation in speciation mechanisms. Proc R Soc Lond B 274:2995–3003

    Google Scholar 

  • Kozak KH, Graham CH, Wiens JJ (2008) Integrating GIS–based environmental data into evolutionary biology. Trends Ecol Evol 23:141–148

    Google Scholar 

  • Kremen C, Cameron A, Moilanen A, Phillips SJ, Thomas CD, Beentje H, Dransfield J, Fisher BL, Glaw F, Good TC, Harper GJ, Hijmans RJ, Lees DC, Louis E, Nussbaum RA, Raxworthy CJ, Razafimpahanana A, Schatz GE, Vences M, Vieites DR, Wright PC, Zjhra ML (2008) Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320:222–226

    CAS  PubMed  Google Scholar 

  • Landbeck CL (1834) Systematische Aufzählung der Vögel Baden-Württembergs mit Angabe ihrer Aufenthaltsörter und ihrer Strichzeit. Cotta, Tübingen

    Google Scholar 

  • Laube I, Graham CH, Böhning-Gaese K (2013) Intra-generic species richness and dispersal ability interact to determine geographic ranges of birds. Glob Ecol Biogeogr 22:223–232

    Google Scholar 

  • Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393

    Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Google Scholar 

  • Mackay BG, Lindemayer DB (2001) Towards a hierarchical framework for modelling the spatial distribution of animals. J Biogeogr 28:1147–1166

    Google Scholar 

  • Maestri F, Voltolini L, Lo Valvo F (1989) Biologia riproduttiva di una comnuita’ di fringillidi in un mugeto dell Alpe Retiche (Sondrio). Riv Ital Ornitol 59:159–171

    Google Scholar 

  • Marini MA, Barbet-Massin M, Lopes LE, Jiguet F (2010) Predicting the occurrence of rare Brazilian birds with species distribution models. J Ornithol 151:857–866

    Google Scholar 

  • Märki H (1976) Brutverbreitung und Winterquartier des Zitronenzeisigs Serinus citrinella nördlich der Pyrenäen. Ornithol Beob 73:67–88

    Google Scholar 

  • Märki H, Adamek G (2013) Nahrungsbedingt wechselnde Winterhabitate des Zitronengirlitzes Serinus citrinella in Südfrankreich. Ornithol Beob 110:437–452

    Google Scholar 

  • Matvejev SD (1981) Laška konopeljščica Serinus citrinella. Acrocephalus 2:59

    Google Scholar 

  • McInnes L, Purvis A, Orme CDL (2009) Where do species’ geographic ranges stop and why? Landscape impermeability and the Afrotropical avifauna. Proc R Soc Lond B 276:3063–3070

    Google Scholar 

  • Mingozzi T, Boano G, Pulcher C (1988) Atlante degli uccelli nidificanti in Piemonte e Val d’Aosta 1980–1984. Monografie VIII, Museo Regionale di Scienze Naturali di Torino

  • Moltoni E (1969) Gli uccelli del Parco nazionale dello Stelvio. Tipografia, Sondrio

  • Moritz D, Bachler A (2001) Die Brutvögel Osttirols. Ein kommentierter Verbreitungsatlas. Author’s edition

  • Newton I (2003) The speciation and biogeography of birds. Academic, Waltham

    Google Scholar 

  • Peterson AT, Vieglais DA (2001) Predicting species invasions using ecological niche modeling: new approaches from bioinformatics attack a pressing problem. Bioscience 51:363–371

    Google Scholar 

  • Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. (2007). Ecography 31:272–278

    Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with MaxEnt: new extensions and comprehensive evaluation. Ecography 31:161–175

    Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE, (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the 21st international conference on machine learning, Banff

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Google Scholar 

  • Phillips SJ, Dudik M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Google Scholar 

  • Praz JC, Oggier PA (1973) Sur l’hivernage due Venturon montagnard en Valais. Nos Oiseaux 32:109–112

    Google Scholar 

  • Probst R (2012) Warum brütet der Zitronenzeisig (Carduelis citrinella) in Kärnten geanu am Dobratsch. Carinthia II 122:493–504

    Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3–900051–07–0. http://www.R-project.org

  • Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TWJ, Veith M, Walker S, Fisher MC, Lötters S (2009a) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1:52–66

    Google Scholar 

  • Rödder D, Schmidtlein S, Veith M, Lötters S (2009b) Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or predictors studied? PLoS ONE 4:e7843

    PubMed  PubMed Central  Google Scholar 

  • Rödder D, Engler JO, Bonke R, Weinsheimer F, Pertel W (2010) Fading of the last giants: an assessment of habitat availability of the Sunda gharial Tomistoma schlegelii and coverage with protected areas. Aquat Conserv 20:678–684

    Google Scholar 

  • Rödder D, Lawing AM, Flecks M, Ahmadzadeh F, Dambach J, Engler JO, Habel J-C, Hartmann T, Hörnes D, Ihlow F, Schidelko K, Stiels D, Polly PD (2013) Evaluating the significance of paleophylogeographic species distribution models in reconstructing quaternary range-shifts of Nearctic chelonians. PLoS ONE 8:e72855

    PubMed  PubMed Central  Google Scholar 

  • Schidelko K, Stiels D, Rödder D (2011) Historical stability of diversity patterns in African estrildid finches (Estrildidae). Biol J Linn Soc 102:455–470

    Google Scholar 

  • Smith SA, Donoghue MJ (2010) Combining Historical Biogeography with Niche Modeling in the Caprifolium Clade of Lonicera (Caprifoliaceae, Dipsacales). Syst Biol 59:322–341

    PubMed  Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1121

    PubMed  Google Scholar 

  • Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods and assumptions. Proc Natl Acad Sci USA 106:19644–19650

    PubMed  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inf 2:1–10

    Google Scholar 

  • Spina F, Volponi S (2008) Atlante Della Migrazione Degli Uccelli in Italia. 2. Passeriformi. Roma: Ministero dell’ Ambiente e della Tutela del Territorio e del Mare, Instituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)

  • Stiels D, Schidelko K, Engler JO, van den Elzen R, Rödder D (2011) Predicting the potential distribution of the invasive common waxbill Estrilda astrild (Passeriformes: estrildidae). J Ornithol 152:769–780

    Google Scholar 

  • Svensson L, Grant PJ, Mullarney K (2009) Collins bird guide. Harper Collins, New York

    Google Scholar 

  • Swets K (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    CAS  PubMed  Google Scholar 

  • Thorup K (2006) Does the migration programme constrain dispersal and range sizes of migratory birds? J Biogeogr 33:1166–1171

    Google Scholar 

  • Vaurie C (1959) The birds of the palearctic fauna. Passeriformes. Witherby, London

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Google Scholar 

  • von Kettner WF (1849) Darstellung der ornithologischen Verhältnisse des Großherzogtums Baden. Beitr Rheinischer Naturgesch 1:39–100

    Google Scholar 

  • Wisz MS, Hijmans RJ, Peterson AT, Graham CH, Guisan A, NPSDW Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Google Scholar 

  • Zink G, Bairlein F (1995) Zug europäischer Singvögel. Band 3. Aula, Wiebelsheim

Download references

Acknowledgments

We are very grateful to D. Alonso, J.M. Alonso, T.P. Aparisi, J. Arizaga, P. Bergier, S. Blache, T. Borras, J. Cabrera, T. Cabrera, J. Cañadas, J. Calleja, C. de Jaime, E. del Val, A. Godino, R. Hevia, R. Kilzer, J.J. Lorite, G. López, H. Märki, T. Mihelic, M. Quintana, S. Peregrina, P. Perret, J.J. Pfeffer, R. Probst, J. Rivas, J.C. Senar and B. Štumberger for providing data on breeding and wintering areas. T. Gottschalk, K. Schidelko and two anonymous reviewers gave valuable comments on an earlier draft of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan O. Engler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1484 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engler, J.O., Rödder, D., Stiels, D. et al. Suitable, reachable but not colonised: seasonal niche duality in an endemic mountainous songbird. J Ornithol 155, 657–669 (2014). https://doi.org/10.1007/s10336-014-1049-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-014-1049-5

Keywords

Navigation