Skip to main content
Log in

Food availability and fuel loss predict Zugunruhe

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Migrating birds spend most of their time at stopover sites where they replenish the fuel used during flight, termed refueling. The overall time of migration thus largely depends on the duration of stopovers, and factors shaping stopover duration therefore are of interest. A handful of field studies have shown that the likelihood of departure from stopover sites increases with poor feeding conditions. However, food availability and stopover duration are generally difficult to quantify accurately in the field. Results of fasting-refueling experiments on captive birds using migratory restlessness (Zugunruhe) as a proxy for departure likelihood are mixed. Although Zugunruhe usually decreased with refueling, fasting often failed to increase Zugunruhe. In addition, some experiments lacked randomization. In a fasting-refueling experiment on Northern Wheatears (Oenanthe oenanthe), using birds as their own control in a randomized fashion, we found that fasting increased Zugunruhe, whereas refueling decreased Zugunruhe. These results show that the motivation to migrate, quantified by Zugunruhe, is affected by changes in food availability. Furthermore, Zugunruhe during refueling did not depend on fuel reserves left after fasting, but tended to decrease with the amount of fuel lost during fasting. We discuss why extent of fuel loss may be a better predictor of stopover duration than fuel reserves.

Zusammenfassung

Nahrungsverfügbarkeit und Körpermassenverlust bedingen Zugunruhe

Zugvögel verbringen in Rastgebieten während des Zuges die meiste Zeit damit, im Flug vorher verbrauchte Energiereserven wieder aufzufüllen („aufzutanken“). Deshalb hängt die Zuggeschwindigkeit insbesondere von der Dauer der Rastaufenhalte ab, weshalb Faktoren, die diese bestimmen, von großem Interesse sind. Eine Handvoll von Arbeiten hat gezeigt, dass die Wahrscheinlichkeit, ein Rastgebiet wieder zu verlassen, ansteigt, wenn die Nahrungsbedingungen schlecht sind. Allerdings ist die Erfassung von Nahrungsverfügbarkeit und Rastdauer im Freiland ganz allgemein schwierig zu quantifizieren. Sog. „Fasten-Auftanken“-Experimente („fasting-refuelling“) an gekäfigten Vögeln, die Zugunruhe als Merkmal für Abflugwahrscheinlichkeit nutzen, ergaben unterschiedliche Ergebnisse. Auch wenn die Zugunruhe üblicherweise abnahm, sobald die Vögel nach Fasten wieder Futter bekamen, erhöhte das Fasten selbst die Zugunruhe meist nicht. Zudem mangelt es manchen dieser Studien an fehlender Randomisierung. In einem „fasting-refuelling“Experiment mit Steinschmätzern (Oenanthe oenanthe), in dem wir den einzelnen Vogel randomisiert als seine eigene Kontrolle nutzten, fanden wir, dass während des Fasten die Zugunruhe zunahm, während sie bei erneuter Massenzunahme („refuelling“) abnahm. Dies zeigt, dass die Motivation zu ziehen, ausgedrückt über die gemessene Zugunruhe, von der Nahrungsverfügbarkeit bestimmt ist. Weiterhin war die Zugunruhe während des „refuelling“nicht von der nach dem Fasten noch restlichen Energiemenge abhängig. Vielmehr nahm sie mit dem Ausmaß des Energieverlustes während des Fastens ab. In der Diskussion erörtern wir, warum der Verlust an „Treibstoff“eine bessere Vorhersage der Rastdauer erlaubt als der Energievorrat selbst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alerstam T (2011) Optimal bird migration revisited. J Ornithol 152(S1):5–23

    Article  Google Scholar 

  • Alerstam T, Lindström A (1990) Optimal bird migration: the relative importance of time, energy and safety. In: Gwinner E (ed) Bird migration. Springer, Berlin, pp 331–351

    Chapter  Google Scholar 

  • Bairlein F (1985) Body weights and fat deposition of Paleartic passerine migrants in the central Sahara. Oecologia 66:141–146

    Article  Google Scholar 

  • Bairlein F (2002) How to get fat: nutritional mechanisms of seasonal fat accumulation in migratory songbirds. Naturwissenschaften 89:1–10

    Article  PubMed  Google Scholar 

  • Bauchinger U, Van’t Hof T, Biebach H (2008) Migratory stopover conditions affect the developmental state of male gonads in garden warblers (Sylvia borin). Horm Behav 54:312–318

    Article  CAS  PubMed  Google Scholar 

  • Berthold P (1976) Über den Einfluß der Fettdeposition auf die Zugunruhe bei der gartengrasmücke Sylvia borin. Vogelwarte 28:263–266

    Google Scholar 

  • Berthold P (1978) Das Zusammenwirken von endogenen Zugzeit-Programmen und Umweltfaktoren beim Zugablauf bei Grasmücken: Eine Hypothese. Vogelwarte 29:153–159

    Google Scholar 

  • Bibby CJ, Green RE (1981) Autumn migration strategies of reed and sedge warblers. Orn Scand 12:1–12

    Article  Google Scholar 

  • Biebach H (1985) Sahara stopover in migratory flycatchers: fat and food affect the time program. Experientia 41:695–697

    Article  Google Scholar 

  • Biebach H, Friedrich W, Heine G (1986) Interaction of bodymass, fat, foraging and stopover period in trans-sahara migrating passerine birds. Oecologia 69:370–379

    Article  Google Scholar 

  • DeWolfe BB, West GC, Peyton LJ (1973) The spring migration of Gambel’s sparrows through southern Yukon territory. Condor 75:43–59

    Article  Google Scholar 

  • Dierschke V, Mendel B, Schmaljohann H (2005) Differential timing of spring migration in northern wheatears Oenanthe oenanthe: hurried males or weak females? Behav Ecol Sociobiol 57:470–480

    Article  Google Scholar 

  • Ellegren H (1991) Stopover ecology of autumn migrating bluethroats, Luscinia s. svecica, in relation to age and sex. Ornis Scand 22:340–348

    Article  Google Scholar 

  • Fusani L, Gwinner E (2004) Simulation of migratory flight and stopover affect night levels of melatonin in a nocturnal migrant. Proc R Soc Lond B 271:205–211

    Article  CAS  Google Scholar 

  • Fusani L, Cardinale M, Carere C, Goymann W (2009) Stopover decision during migration: physiological conditions predict nocturnal restlessness in wild passerines. Biol Lett 5:302–305

    Article  PubMed Central  PubMed  Google Scholar 

  • Goymann W, Spina F, Ferri A, Fusani L (2010) Body fat influences departure from stopover sites in migratory birds: evidence from whole-island telemetry. Biol Lett 6:478–481

    Article  PubMed Central  PubMed  Google Scholar 

  • Green M, Alerstam T, Clausen P, Drent R, Ebbinge BS (2002) Dark-bellied brent geese Branta bernicla bernicla, as recorded by satellite telemetry, do not minimize flight distance during spring migration. Ibis 144:106–121

    Article  Google Scholar 

  • Gwinner E, Biebach H, Kries I (1985) Food availability affects migratory restlessness in caged garden warblers (Sylvia borin). Naturwissenschaften 72:51–52

    Article  Google Scholar 

  • Gwinner E, Schwabl H, Schwabl-Benzinger I (1988) Effects of food-deprivation on migratory restlessness and diurnal activity in the garden warbler Sylvia borin. Oecologia 77:321–326

    Article  Google Scholar 

  • Hedenström A (2008) Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Phil Trans R Soc B 363:287–299

    Article  PubMed  Google Scholar 

  • Hedenström A, Alerstam T (1997) Optimal fuel loads in migratory birds: distinguishing between time and energy minimization. J Theor Biol 189:227–234

    Article  PubMed  Google Scholar 

  • Kaiser A (1993) A new multi-category classification of subcutaneous fat deposits of song birds. J Field Ornithol 64:246–255

    Google Scholar 

  • Kuenzi AJ, Moore FR, Simons T (1991) Stopover of neotropical landbird migrants on east ship island following trans-gulf migration. Condor 93:869–883

    Article  Google Scholar 

  • Lindström A (2003) Fuel deposition rates in migrating birds: causes, constraints and consequences. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 307–320

    Chapter  Google Scholar 

  • Lyons JE, Haig SM (1995) Fat content and stopover ecology of spring migrant semipalmated sandpipers in South Carolina. Condor 97:427–437

    Article  Google Scholar 

  • Maggini I, Bairlein F (2010) Endogenous rhythms of seasonal migratory body mass changes in different populations of northern wheatears Oenanthe oenanthe. J Biol Rhytms 25:268–276

    Article  Google Scholar 

  • Maggini I, Bairlein F (2012) Innate sex differences in the timing of spring migration in a songbird. PLoS One 7(2):e31271. doi:10.1371/journal.pone.0031271

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morris SR, Holmes DW, Richmond ME (1996) A ten-year study of the stopover patterns of migratory passerines during fall migration on Appledore Island, Maine. Condor 98:395–409

    Article  Google Scholar 

  • Ottich I, Dierschke V (2003) Exploitation of resources modulates stopover behaviour of passerine migrants. J Ornithol 144:307–316

    Google Scholar 

  • Ramenofsky M, Agatsuma R, Ramfar T (2008) Environmental conditions affect the behavior of captive, migratory white-crowned sparrows. Condor 110:658–671

    Article  Google Scholar 

  • Safriel UN, Lavee D (1988) Weight changes of cross-desert migrants at an oasis—do energetic considerations alone determine the length of stopover? Oecologia 76:611–619

    Google Scholar 

  • Salewski V, Schaub M (2007) Stopover duration of Paleartic passerine migrants in the western Sahara—independent of fat stores? Ibis 149:223–236

    Article  Google Scholar 

  • Schaub M, Jenni L, Bairlein F (2008) Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site. Behav Ecol 19:657–666

    Article  Google Scholar 

  • Schmaljohann H, Naef-Daenzer B (2011) Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird. J Anim Ecol 80:1115–1122

    Article  PubMed  Google Scholar 

  • Tsvey A, Bulyuk VN, Kosarev V (2007) Influence of body condition and weather on departures of first-year European robins, Erithacus rubecula, from an autumn migratory stopover site. Behav Ecol Sociobiol 61:1665–1674

    Article  Google Scholar 

  • Yong W, Moore FR (1993) Relation between migratory activity and energetic condition among thrushes (Turdinae) following passage across the Gulf of Mexico. Condor 95:934–943

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ulrich Meyer and Adolf Völk for their assistance in the experiment, Marc Bulte for help with the Zugunruhe equipment, and two anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cas Eikenaar.

Additional information

Communicated by L. Fusani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eikenaar, C., Bairlein, F. Food availability and fuel loss predict Zugunruhe. J Ornithol 155, 65–70 (2014). https://doi.org/10.1007/s10336-013-0987-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-013-0987-7

Keywords

Navigation