Skip to main content

Advertisement

Log in

A comparison of the adrenocortical responses to acute stress in cardueline finches from the Tibetan Plateau, Arctic Alaska and lowland Western North America

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

In many avian species, it has been well demonstrated that individuals attempting to breed in harsh or unpredictable environments always express reduced adrenocortical responses to acute stress, whereas those breeding in more benign or predictable environments may show more robust responses. However, fewer studies have focused on comparing closely related species that express similar behavioral traits (e.g., territorial behavior, mating system, nestling behavior) and ecological traits (e.g., habitats, food resources) among different breeding environments. In closely related taxa, we hypothesized that those species breeding in benign environments would show greater adrenocortical responses to acute stress compared with their congeners breeding in harsh environments. In this study, we examined seasonal and sex differences in baseline and stress-induced plasma corticosterone (CORT) levels in four cardueline finch species from Arctic Alaska (reanalysis of previously published data from the Common Redpoll, Carduelis flammea, at high latitude habitats), the Tibetan Plateau (Twite, C. flavirostris, from high altitude, mid-latitude habitats), and western North America (American Goldfinch, C. tristis, and Pine Siskin, C. pinus, from mid-latitude and low altitude habitats). Our results showed that (1) Twites had lowered adrenocortical responses during the pre-basic molt stage than the early breeding stage, both sexes of American Goldfinch and Pine Siskin showed similar patterns of adrenocortical responses between the early breeding and the late breeding stages, whereas Common Redpolls expressed significantly lowered adrenocortical responses during the late breeding stage; and (2) unexpectedly, there were no significant differences in baseline or stress-induced CORT (maximal CORT, total integrated and corrected integrated CORT levels) levels among Twites, American Goldfinches, Pine Siskins, and Common Redpolls during the early breeding stage or among American Goldfinches, Pine Siskins and Common Redpolls during the late breeding stage. This similar pattern in adrenocortical responses may reflect the stability of physiological functions of CORT during long-term evolutionary adaptation. It also provides us with an opportunity to understand the potential effects of phylogenetic relationships on the modulation of adrenocortical responses to acute stress in free-living birds. Whether phylogenetic effects are a common or casual phenomenon remains to be determined in other closely related taxa.

Zusammenfassung

Vergleich der adrenokortikalen Reaktion auf akuten Stress bei Cardueliden der Tibetischen Hochebene, des arktischen Alaskas und des westlichen Tieflands Nordamerikas

Von vielen Vogelarten ist bekannt, dass Individuen, die in rauen oder unvorhersagbaren Lebensräumen brüten, auf akuten Stress immer mit einer geringeren adrenokortikalen Reaktion antworten als Individuen, die in einer günstigeren oder vorhersehbareren Umwelt brüten und welche stärkere Reaktionen zeigen können. Allerdings gibt es nur wenige zwischen verschiedenen Bruthabitaten vergleichende Untersuchungen zu nahe verwandten Arten mit ähnlichem Verhalten (z. B. Territorialverhalten, Paarungssysteme, Nestlingsverhalten) und ökologischen Bedürfnissen (z. B. Lebensräume, Nahrungsressourcen). Unsere Hypothese für nah verwandte Taxa war, dass Arten, die in einer günstigeren Umwelt brüten, eine stärkere adrenokortikale Reaktion auf akuten Stress zeigen, als deren Gattungsgenossen, die in rauen Lebensräumen brüten. In dieser Studie wurden saisonale und geschlechtsspezifische Unterschiede in den Corticosteron-Plasmawerten (CORT) in Ruhe und unter Stress bei vier Carduelidenarten des arktischen Alaskas (erneute Auswertung bereits veröffentlichter Daten vom Birkenzeisig Carduelis flammea aus Habitaten höherer Breiten), der Tibetischen Hochebene (Berghänfling C. flavirostris aus Hochgebirgshabitaten mittlerer Breiten) und des westlichen Nordamerikas (Goldzeisig C. tristis und Fichtenzeisig C. pinus aus Tieflandhabitaten mittlerer Breiten) untersucht. Die Ergebnisse zeigten, dass (1) Berghänflinge während der Postnuptialmauser eine gegenüber der frühen Brutphase verminderte adrenokortikale Reaktion aufwiesen. Bei Goldzeisigen und Fichtenzeisigen zeigten beide Geschlechter zu Beginn und gegen Ende der Brutzeit ähnliche Muster in der adrenokortikalen Reaktion, während Birkenzeisige in der späten Brutphase eine signifikant verminderte adrenokortikale Reaktion aufwiesen. (2) Anders als erwartet gab es keine signifikanten Unterschiede in den CORT-Werten (CORT-Höchstwert, Gesamtwert und korrigierter Wert) in Ruhe und unter Stress zwischen Berghänfling, Goldzeisig, Fichtenzeisig und Birkenzeisig zu Beginn der Brutzeit bzw. zwischen Goldzeisig, Fichtenzeisig und Birkenzeisig gegen Ende der Brutzeit. Dieses ähnliche Muster in der adrenokortikalen Reaktion spiegelt möglicherweise die Stabilität der physiologischen Funktionen von CORT in der langfristigen evolutiven Anpassung wieder. Außerdem stellt es eine Gelegenheit dar, die möglichen Auswirkungen phylogenetischer Verwandtschaft auf die Modulation adrenokortikaler Reaktionen wildlebender Vögel auf akuten Stress zu verstehen. Ob phylogenetische Effekte ein häufiges oder gelegentliches Phänomen darstellen, muss noch bei anderen nahe verwandten Taxa geklärt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams NJ, Cockrem JF, Taylor GA, Candy EJ, Bridges J (2005) Corticosterone responses of grey-faced petrels (Pterodroma macroptera gouldi) are higher during incubation than during other breeding stages. Physiol Biochem Zool 78:69–77

    Article  CAS  PubMed  Google Scholar 

  • Astheimer LB, Buttemer WA, Wingfield JC (1995) Seasonal and acute changes in adrenocortical responsiveness in an Arctic-breeding bird. Horm Behav 29:442–457

    CAS  PubMed  Google Scholar 

  • Biebach H, Friedrich W, Heine G (1986) Interaction of body mass, fat, foraging and stopover period in trans-Sahara migrating passerine birds. Oecologia 69:370–379

    CAS  PubMed  Google Scholar 

  • Bókony V, Lendvai AZ, Liker A, Angelier F, Wingfield JC, Chastel O (2009) Stress response and the value of reproduction: are birds prudent parents? Am Nat 173:589–598

    PubMed  Google Scholar 

  • Bonier F, Moore IT, Martin PR, Robertson RJ (2009) The relationship between fitness and baseline glucocorticoids in a passerine bird. Gen Comp Endocrinol 163:208–213

    CAS  PubMed  Google Scholar 

  • Boonstra R (2004) Coping with changing northern environments: the role of the stress axis in birds and mammals. Integr Comp Biol 44:95–108

    PubMed  Google Scholar 

  • Cockrem JF, Silverin B (2002) Variation within and between birds in corticosterone responses of great tits (Parus major). Gen Comp Endocrinol 125:197–206

    CAS  PubMed  Google Scholar 

  • Hau M, Ricklefs RE, Wikelski M, Lee KA, Brawn JD (2010) Corticosterone, testosterone and life history strategies of birds. Proc R Soc Lond B 277:3203–3212

    CAS  Google Scholar 

  • Holberton RL (1999) Changes in patterns of corticosterone secretion concurrent with migratory fattening in a Neotropical migratory bird. Gen Comp Endocrinol 116:49–58

    CAS  PubMed  Google Scholar 

  • Holberton RL, Able KP (2000) Differential migration and an endocrine response to stress in wintering dark-eyed juncos (Junco hyemalis). Proc R Soc Lond B 267:1889–1896

    CAS  Google Scholar 

  • Holberton RL, Wingfield JC (2003) Modulating the corticosterone stress response: a mechanism for balancing individual risk and reproductive success in Arctic-breeding sparrows? Auk 120:1140–1150

    Google Scholar 

  • Landys MM, Ramenofsky M, Wingfield JC (2006) Actions of glucocorticoids at a seasonal baseline as compared to stress-related levels in the regulation of periodic life processes. Gen Comp Endocrinol 148:132–149

    CAS  PubMed  Google Scholar 

  • Li D, Wang G, Wingfield JC, Zhang Z, Ding C, Lei F (2008) Seasonal changes in adrenocortical responses to acute stress in Eurasian tree sparrow (Passer montanus) on the Tibetan Plateau: Comparison with house sparrow (P. domesticus) in North America and with the migratory P. domesticus in Qinghai Province. Gen Comp Endocrinol 158:47–53

    CAS  PubMed  Google Scholar 

  • Li D, Wu J, Zhang X, Ma X, Wingfield JC, Lei F, Wang G, Wu Y (2011) Comparison of adrenocortical responses to acute stress in lowland and highland Eurasian tree sparrows (Passer montanus): similar patterns during the breeding, but different during the prebasic molt. J Exp Zool 315:512–519

    Google Scholar 

  • Love OP, Chin EH, Wynne-Edwards KE, Williams TD (2005) Stress hormones: a link between maternal condition and sex-biased reproductive investment. Am Nat 166:751–766

    PubMed  Google Scholar 

  • Meddle SL, Owen-Ashley NT, Richardson MI, Wingfield JC (2003) Modulation of the hypothalamic-pituitary-adrenal axis of an Arctic-breeding polygynandrous songbird, the Smith’s longspur, Calcarius pictus. Proc R Soc Lond B 270:1849–1856

    CAS  Google Scholar 

  • O’Reilly KM, Wingfield JC (2001) Ecological factors underlying the adrenocortical response to capture stress in Arctic-breeding birds. Gen Comp Endocrinol 124:1–11

    PubMed  Google Scholar 

  • O’Reilly KM, Wingfield JC (2003) Seasonal, age, and sex differences in weight, fat reserves, and plasma corticosterone in western sandpipers. Condor 105:13–26

    Google Scholar 

  • Pereyra ME, Wingfield JC (2003) Changes in plasma corticosterone and adrenocortical response to stress during the breeding cycle in high altitude flycatchers. Gen Comp Endocrinol 130:222–231

    CAS  PubMed  Google Scholar 

  • Richardson MI, Moore IT, Soma KK, Lei F, Wingfield JC (2003) How similar are high latitude and high altitude habitats? A review and a preliminary study of the adrenocortical response to stress in birds of the Qing-Tibetan Plateau. Acta Zool Sin 49:1–19

    CAS  Google Scholar 

  • Romero ML (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128:1–24

    CAS  PubMed  Google Scholar 

  • Romero ML, Wingfield JC (1998) Seasonal changes in adrenal sensitivity alter corticosterone levels in Gambel’s white-crowned sparrows (Zonotrichia leucophyrys gambelii). Comp Biochem Physiol C 119:31–36

    CAS  PubMed  Google Scholar 

  • Romero ML, Soma KK, Wingfield JC (1998a) Changes in pituitary and adrenal sensitivities allow the snow bunting (Plectrophenax nivalis), an arctic-breeding song bird, to modulate corticosterone release seasonally. J Comp Physiol B 168:353–358

    CAS  PubMed  Google Scholar 

  • Romero ML, Soma KK, Wingfield JC (1998b) Hypothalamic-pituitary-adrenal axis changes allow seasonal modulation of corticosterone in a bird. Am J Physiol 274:R1338–R1344

    CAS  PubMed  Google Scholar 

  • Romero ML, Soma KK, Wingfield JC (1998c) The hypothalamus and adrenal regulate modulation of corticosterone release in redpolls (Carduelis flammea—an arctic-breeding song bird). Gen Comp Endocrinol 109:347–355

    CAS  PubMed  Google Scholar 

  • Romero ML, Strochlic D, Wingfield JC (2005) Corticosterone inhibits feather growth: potential mechanism explaining seasonal down regulation of corticosterone during molt. Comp Biochem Physiol A 142:65–73

    Google Scholar 

  • Romero ML, Cyr NE, Romero RC (2006) Corticosterone responses change seasonally in free-living house sparrows (Passer domesticus). Gen Comp Endocrinol 149:58–65

    PubMed  Google Scholar 

  • Sapolsky RM (1992) Stress, the aging brain, and the mechanisms of neuron death. MIT Press, Cambridge

    Google Scholar 

  • Sapolsky RM, Romero ML, Munck AU (2000) How do glucocorticoids influence stress response? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev 21:55–89

    CAS  PubMed  Google Scholar 

  • Silverin B (1998) Stress responses in birds. Poult Avian Biol Rev 9:153–168

    Google Scholar 

  • Silverin B, Wingfield JC (1998) Adrenocortical responses to stress in breeding pied flycatchers Ficedula hypoleuca: relation to latitude, sex and mating status. J Avian Biol 29:228–234

    Google Scholar 

  • Walker BG, Boersma PD, Wingfield JC (2005) Physiological and behavioral differences in Magellanic penguin chicks in undisturbed and tourist-visited locations of a colony. Conserv Biol 19:1571–1577

    Google Scholar 

  • Wilson CM, Holberton RL (2004) Individual risk versus immediate reproductive success: a basis for latitudinal differences in the adrenocortical response to stress in yellow warblers (Dendroica petechia). Auk 121:1238–1249

    Google Scholar 

  • Wingfield JC (1994) Modulation of the adrenocortical response to stress in birds. In: Davey KG, Peter RE, Tobe SS (eds) Perspectives in Comparative Endocrinology. National Research Council Canada, Ottawa, pp 520–528

    Google Scholar 

  • Wingfield JC (2003) Control of behavioural strategies for capricious environments. Anim Behav 66:807–816

    Google Scholar 

  • Wingfield JC, Farner DS (1978) The annual cycle of plasma irLH and steroid hormones in feral populations of the white-crowned sparrow (Zonotrichia leucophrys gambelii). Biol Reprod 19:1046–1056

    CAS  PubMed  Google Scholar 

  • Wingfield JC, Hunt KE (2002) Arctic spring: hormone behavior interactions in a severe environment. Comp Biochem Physiol B 132:275–286

    PubMed  Google Scholar 

  • Wingfield JC, Kitaysky AS (2002) Endocrine responses to unpredictable environmental events: stress or anti-stress hormones? Integr Comp Biol 42:600–609

    CAS  PubMed  Google Scholar 

  • Wingfield JC, Ramenofsky M (1999) Hormones and the behavioral ecology of stress. In: Balm PHM (ed) Stress physiology in animals. Sheffield Academic Press, Sheffield, pp 1–51

    Google Scholar 

  • Wingfield JC, Sapolsky RM (2003) Reproduction and resistance to stress: when and how. J Neuroendocrinol 15:711–724

    CAS  PubMed  Google Scholar 

  • Wingfield JC, Vleck CM, Moore MC (1992) Seasonal changes of the adrenocortical response to stress in birds of the Sonoran Desert. J Exp Zool 264:419–428

    CAS  PubMed  Google Scholar 

  • Wingfield JC, Deviche P, Sharbaugh S, Astheimer LB, Holberton RL, Suydam R, Hunt K (1994a) Seasonal changes of the adrenocortical responses to stress in redpolls, Acanthis flammea, in Alaska. J Exp Zool 270:372–380

    Google Scholar 

  • Wingfield JC, Suydam R, Hunt K (1994b) The adrenocortical responses to stress in snow buntings (Plectrophenax nivalis) and Lapland longspurs (Calcarius lapponicus) at Barrow, Alaska. Comp Biochem Physiol C 108:299–306

    Google Scholar 

  • Wingfield JC, O’Reilly KM, Astheimer LB (1995) Modulation of the adrenocortical responses to acute stress in Arctic birds: a possible ecological basis. Am Zool 35:285–294

    CAS  Google Scholar 

  • Wingfield JC, Jacobs JD, Hillgarth N (1997) Ecological constraints and the evolution of hormone-behavior interrelationships. In: Sue Carter C, Lederhendler I, Kirkpatrick B (eds) The integrative neurobiology of affiliation, 807. Academic Science, New York, pp 22–41

    Google Scholar 

  • Wingfield J, Breuner C, Jacobs J, Lynn S, Maney D, Ramenofsky M, Richardson R (1998) Ecological bases of hormone-behavior interactions: the “emergency life history stage”. Am Zool 38:191–206

    CAS  Google Scholar 

  • Wingfield JC, Kelley PJ, Angelier F, Chastel O, Lei F, Lynn SE, Miner B, Davis JE, Li D, Wang G (2011) Organism-environment interactions in a changing world: a mechanistic approach. J Ornithol 152(Suppl 1):S279–S288

    Google Scholar 

  • Zhang Y, Li B, Zheng D (2002) A discussion on the boundary and area of the Tibetan Plateau in China. Geogr Res 21:1–10

    Google Scholar 

  • Zhang S, Lei F, Liu S, Li D, Chen C, Wang P (2011) Variation in baseline corticosterone levels of tree sparrow (Passer montanus) populations along an urban gradient in Beijing, China. J Ornithol 152:801–806

    Google Scholar 

Download references

Acknowledgments

We are very grateful to Lynn Erckmann for expert assistance with the corticosterone radioimmunoassay, to Yin Zuohua and Zhang Zhi for the field samplings, and to Haiqing He for excellent driving assistance in the field. This research was supported by National Science Funds for Distinguished Young Scientists (No. 30925008) to F.M.L., OPP-9911333 and IBN-0317141 from the National Science Foundation to J.C.W., and NSFC Program-J0930004, NSFC-31000191 and HNU-L2008B11 to D.M.L.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John C. Wingfield or Fumin Lei.

Additional information

Communicated by L. Fusani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Wang, G., Wingfield, J.C. et al. A comparison of the adrenocortical responses to acute stress in cardueline finches from the Tibetan Plateau, Arctic Alaska and lowland Western North America. J Ornithol 153, 761–770 (2012). https://doi.org/10.1007/s10336-011-0792-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-011-0792-0

Keywords

Navigation