Skip to main content
Log in

Weather significantly influences the migratory behaviour of night-migratory songbirds tested indoors in orientation cages

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Each year, millions of birds migrate from their breeding grounds to their overwintering sites and back. The success, duration and effort of such a long journey depend strongly on the meteorological parameters the birds encounter en route. The behaviour of free-flying migratory birds and those studied outdoors in orientation cages has been shown to be influenced by local weather factors. However, only a few, mostly descriptive, studies have analysed whether meteorological parameters should be considered when testing captive migratory birds indoors in orientation cages. Here, we used a statistical approach to analyse how meteorological parameters affect orientation performance in a night-migrating songbird, the garden warbler (Sylvia borin), when tested indoors in Emlen funnels. Our results show that the activity and directionality of the tested birds is influenced significantly by local atmospheric pressure. Together with previous studies, these results suggest that weather conditions have an impact on orientation behaviour even during indoor experiments. The findings emphasize the importance of mixing up and/or randomizing different conditions on any given night. Ideally, during any given test night, the same number of birds should be tested in each condition involved in a given study. Thereby, the documented weather effects will influence the results of all experimental groups equally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Åkesson S, Bäckman J (1999) Orientation in pied flycatchers: the relative importance of magnetic and visual information at dusk. Anim Behav 57:819–828

    PubMed  Google Scholar 

  • Åkesson S, Hedenström A (2000) Wind selectivity of migratory flight departures in birds. Behav Ecol Sociobiol 47:140–144

    Google Scholar 

  • Åkesson S, Karlsson L, Walinder G, Alerstam T (1996) Bimodal orientation and the occurrence of temporary reverse bird migration during autumn in south Scandinavia. Behav Ecol Sociobiol 38:293–302

    Google Scholar 

  • Alerstam T (1978) Analysis and a theory of visible bird migration. Oikos 30:273–349

    Google Scholar 

  • Alerstam T, Lindström Å (1990) Optimal bird migration: the relative importance of time, energy, and safety. In: Gwinner E (ed) Bird migration: physiology and ecophysiology. Springer, Berlin, pp 331–351

    Google Scholar 

  • Bagg AM, Gunn WWH, Smith W, Miller DS, Nichols JT, Wolfarth FP (1950) Barometric pressure-patterns and spring bird migration. Wilson Bull 62:5–19

    Google Scholar 

  • Bairlein F (1987) Nutritional-requirements for maintenance of body weight and fat deposition in the long-distance migratory garden warbler, Sylvia borin (Boddaert). Comp Biochem Physiol A Physiol 86:337–347

    CAS  Google Scholar 

  • Berthold P (1979) Über die photoperiodische Synchronisation circannualer Rhythmen bei Grasmücken (Sylvia). Vogelwarte 30:7–10

    Google Scholar 

  • Berthold P (1996) Control of bird migration. Chapman & Hall, London

    Google Scholar 

  • Berthold P (2001) Bird migration: a general survey. Oxford University Press, Oxford

    Google Scholar 

  • Berthold P, Gwinner E, Sonnenschein E (2003) Avian migration. Springer, Berlin, 610 p

  • Billings CE (1973) Barometric pressure. In: Parker JF, West VR (eds) Bioastronautics data book. NASA, Washington, DC

    Google Scholar 

  • Bolshakov C, Chernetsov N (2004) Initiation of nocturnal flight in two species of long-distance migrants (Ficedula hypoleuca and Acrocephalus schoenobaenus) in spring: a telemetry study. Avian Ecol Behav 12:63–73

    Google Scholar 

  • Bruderer B (1997) The study of bird migration by radar 2. Major achievements. Naturwiss 84:45–54

    CAS  Google Scholar 

  • Chernetsov N, Huettmann F (2005) Linking global climate grid surfaces with local long-term migration monitoring data: spatial computations for the Pied Flycatcher to assess climate-related population dynamics on a continental scale. In: Gervasi O, Gavrilova M, Kumar V, Tan K, Mun Y, Taniar D, Heow Pueh L (eds) ICCSA 2005, Lecture notes in computer science 3482:133–142

  • Cochran WW, Mouritsen H, Wikelski M (2004) Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304:405–408

    CAS  PubMed  Google Scholar 

  • Critchfield HJ (1966) General climatology, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Dänhardt J, Lindström Å (2001) Optimal departure decisions of songbirds from an experimental stopover site and the significance of weather. Anim Behav 62:235–243

    Google Scholar 

  • Dressler FB (1893) On the pressure sense of the drum of the ear and “facial vision”. Am J Psychol 5:344–350

    Google Scholar 

  • Emlen ST, Emlen JT (1966) A technique for recording migratory orientation of captive birds. Auk 83:361–367

    Google Scholar 

  • Green M, Alerstam T, Gudmundsson GA, Hedenström A, Piersma T (2004) Do Arctic waders use adaptive wind drift? J Avian Biol 35:305–315

    Google Scholar 

  • Griffin DR (1969) The physiology and geophysics of bird navigation. Q Rev Biol 44:255–276

    Google Scholar 

  • Griffin DR (1973) Oriented bird migration in or between opaque cloud layers. Proc Am Philos Soc 117:117–141

    Google Scholar 

  • Gwinner E, Biebach H, von Kries I (1985) Food availability affects migratory restlessness in caged garden warblers (Sylvia borin). Naturwissenschaften 72:51–52

    Google Scholar 

  • Hall LS, Fish AM, Morrison ML (1992) The influence of weather on hawk movements in coastal Northern California. Wilson Bull 104:447–461

    Google Scholar 

  • Hassler SS, Graber RR, Bellrose FC (1963) Fall migration and weather, a radar study. Wilson Bull 75:56–77

    Google Scholar 

  • Hoover JP (2003) Decision rules for site fidelity in a migratory bird, the prothonotary warbler. Ecology 84:416–430

    Google Scholar 

  • Hüppop O, Hüppop K (2003) North Atlantic Oscillation and timing of spring migration in birds. Proc R Soc Lond Ser B Biol Sci 270:233–240

    Google Scholar 

  • Hüppop O, Winkel W (2006) Climate change and timing of spring migration in the long-distance migrant Ficedula hypoleuca in Central Europe: the role of spatially different temperature changes along migration routes. J Ornithol 147:344–353

    Google Scholar 

  • Koistinen J (2000) Bird migration patterns on weather radars. Phys Chem Earth B 25:1185–1193

    Google Scholar 

  • Kreithen ML, Keeton WT (1974) Detection of changes in atmospheric pressure by homing pigeon, Columba livia. J Comp Physiol 89:73–82

    Google Scholar 

  • Liechti F (2006) Birds: blowin’ by the wind? J Ornithol 147:202–211

    Google Scholar 

  • Löwenstein O, Sand A (1940) The individual and integrated activity of the semicircular canals of the elasmobranch labyrinth. J Physiol 99:89–101

    PubMed  PubMed Central  Google Scholar 

  • Marchetti C, Baldaccini NE (2003) Individual variability in experiments with Emlen funnels. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 393–405

    Google Scholar 

  • Marchetti C, Bezzi EM, Baldaccini NE (1998) Orientation in relation to exposure to the setting sun in some passerine trans-Saharan migrants. Ethol Ecol Evol 10:143–157

    Google Scholar 

  • Marra PP, Francis CM, Mulvihill RS, Moore FR (2005) The influence of climate on the timing and rate of spring bird migration. Oecologia 142:307–315

    PubMed  Google Scholar 

  • Merkel FW, Wiltschko W (1965) Magnetismus und Richtungsfinden zugunruhiger Rotkehlchen (Erithacus rubecula). Vogelwarte 23:71–77

    Google Scholar 

  • Mouritsen H (1998a) Redstarts, Phoenicurus phoenicurus, can orient in a true-zero magnetic field. Anim Behav 55:1311–1324

    CAS  PubMed  Google Scholar 

  • Mouritsen H (1998b) Modelling migration: the clock-and-compass model can explain the distribution of ringing recoveries. Anim Behav 56:899–907

    CAS  PubMed  Google Scholar 

  • Mouritsen H (2003) Spatiotemporal orientation strategies of long-distance migrants. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer, Berlin, pp 493–513

    Google Scholar 

  • Mouritsen H, Larsen ON (1998) Migrating young pied flycatchers Ficedula hypoleuca do not compensate for geographical displacements. J Exp Biol 201:2927–2934

    Google Scholar 

  • Mouritsen H, Mouritsen O (2000) A mathematical expectation model for bird navigation based on the clock-and-compass strategy. J Theor Biol 60:283–291

    Google Scholar 

  • Mouritsen H, Feenders G, Hegemann A, Liedvogel M (2009) Thermal paper can replace typewriter correction paper in Emlen funnels. J Ornithol 150:713–715

    Google Scholar 

  • Muheim R, Phillips JB, Akesson S (2006) Polarized light cues underlie compass calibration in migratory songbirds. Science 313:837–839

    CAS  PubMed  Google Scholar 

  • Neeser JA, Von Bartheld CS (2002) Comparative anatomy of the paratympanic organ (Vitali organ) in the middle ear of birds and non-avian vertebrates: focus on alligators, parakeets and armadillos. Brain Behav Evol 60:65–79

    PubMed  Google Scholar 

  • Neter J, Wasserman W, Kutner MH (1990) Applied linear statistical models, 3rd edn. Homewood, Illinois

    Google Scholar 

  • Nilsson AK, Alerstam T, Nilsson JA (2006) Do partial and regular migrants differ in their responses to weather? Auk 123:537–547

    Google Scholar 

  • Outlaw DC, Voelker G, Mila B, Girman DJ (2003) Evolution of long-distance migration in and historical biogeography of Catharus thrushes: a molecular phylogenetic approach. Auk 120:299–310

    Google Scholar 

  • Palmgren P (1937) Auslösung der Frühjahrsunruhe durch Warme bei gekäfigten Rotkehlchen. Ornis Fenn 14:71–73

    Google Scholar 

  • Richardson WJ (1978) Timing and amount of bird migration in relation to weather: a review. Oikos 30:224–272

    Google Scholar 

  • Richardson WJ (1982) Northeastward reverse migration of birds over Nova-Scotia, Canada, in autumn. Behav Ecol Sociobiol 10:193–206

    Google Scholar 

  • Richardson WJ (1990) Wind and orientation of migrating birds: a review. Cell Mol Life Sci 46:416–425

    Google Scholar 

  • Richardson WJ (2000) Bird migration and wind turbines: migration timing, flight behavior, and collision risk. National Avian––Wind Power Planning Meeting III, Conference Proceedings, pp 132–140

  • Sandberg R (1994) Interaction of body condition and magnetic orientation in autumn migrating robins, Erithacus rubecula. Anim Behav 47:679–686

    Google Scholar 

  • Sandberg R, Pettersson J, Alerstam T (1988) Why do migrating robins, Erithacus rubecula, captured at two nearby stop-over sites orient differently? Anim Behav 36:865–876

    Google Scholar 

  • Shamoun-Baranes J, van Loon E, Alon D, Alpert P, Yom-Tov Y, Leshem Y (2006) Is there a connection between weather at departure sites, onset of migration and timing of soaring-bird autumn migration in Israel? Glob Ecol Biogeogr 15:541–552

    Google Scholar 

  • Siivonen L, Palmgren P (1936) Über die Einwirkung der Temperatursenkung auf die Zugstimmung einer gekäfigten Singdrossel. Ornis Fenn 13:64–67

    Google Scholar 

  • Sokolov LV, Gordienko NS (2008) Has recent climate warming affected the dates of bird arrival to the Il’men Reserve in the Southern Urals? Russ J Ecol 39:56–62

    Google Scholar 

  • Sokolov LV, Markovets MY, Shapoval AP, Morozov YG (1998) Long-term trends in the timing of spring migration of passerines on the Courish Spit of the Baltic Sea. Avian Ecol Behav 1:1–21

    Google Scholar 

  • Stervander M, Lindström Å, Jonzén N, Andersson A (2005) Timing of spring migration in birds: long-term trends, North Atlantic oscillation and the significance of different migration routes. J Avian Biol 36:210–221

    Google Scholar 

  • Thorup K, Alerstam T, Hake M, Kjellén N (2003) Bird orientation: compensation for wind drift in migrating raptors is age dependent. Proc R Soc Ser B Biol Sci 270:S8–S11

    Google Scholar 

  • Viehmann W (1982) Orientierungsverhalten von Mönchsgrasmuecken (Sylvia atricapilla) in Frühjahr in Abhängigkeit der Wetterlage. Vogelwarte 31:452–457

    Google Scholar 

  • Von Bartheld CS (1994) Functional morphology of the paratympanic organ in the middle ear of birds. Brain Behav Evol 44:61–73

    Google Scholar 

  • Walther Y, Bingman VO (1984) Orientierungsverhalten von Trauerschnäppern (Ficedula hyoleuca) wöhrend des Frühjahrszuges in Abhängigkeit von Wetterfaktoren. Vogelwarte 32:201–205

    Google Scholar 

  • Wang GCS (1996) How to handle multicollinearity in regression modeling. J Bus Forecast Methods Syst 15:23–27

    Google Scholar 

  • Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nat Neurosci 461:1274–1277

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. Hans Colonius and Prof. Dr. Ralf Werner Stecking for their help in carrying out the statistical analyses, Prof. Dr. Christiane Thiel for constructive input to a previous version of this manuscript, the VolkswagenStiftung and the Deutsche Forschungsgemeinschaft for financial support, and the workshops of University of Oldenburg for building top-quality magnetic coil systems and electronic controls. All animal procedures were approved by the Animal Care and Use Committees of the LAVES (Oldenburg, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Mouritsen.

Additional information

Communicated by F. Bairlein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 102 kb)

Supplementary material 2 (PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hein, C.M., Zapka, M. & Mouritsen, H. Weather significantly influences the migratory behaviour of night-migratory songbirds tested indoors in orientation cages. J Ornithol 152, 27–35 (2011). https://doi.org/10.1007/s10336-010-0540-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-010-0540-x

Keywords

Navigation