Skip to main content
Log in

Extrapair paternity in a German population of the Northern Wheatear (Oenanthe oenanthe)

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

We demonstrate the potential of a set of novel microsatellite markers to investigate kin structure and population genetics in the Northern Wheatear (Oenanthe oenanthe). In this study, based on 242 individuals from a population in Rhineland-Palatinate (Germany), we found that 26% of the offspring in 46% of the broods were sired by other males than the social fathers. We tested different hypotheses why males engage in extrapair copulations and found that almost all identified genetic fathers originated from directly neighbouring territories. Additionally, we detected 2 out of 134 offspring in two broods that could not be assigned to their putative mother and thus were probably the result of intraspecific brood parasitism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akςay E, Roughgarden J (2007) Extrapair paternity in birds: review of the genetic benefits. Evol Ecol Res 9:855–868

    Google Scholar 

  • Arlt D, Part T (2007) Nonideal breeding habitat selection: a mismatch between preference and fitness. Ecology 88:792–801

    Article  PubMed  Google Scholar 

  • Arlt D, Part T (2008) Post-breeding information gathering and breeding territory shifts in northern wheatears. J Anim Ecol 77:211–219

    PubMed  Google Scholar 

  • Belkhir K, Castric V, Bonhomme F (2002) IDENTIX, a software to test for relatedness in a population using permutation methods. Mol Ecol Notes 2:611–614

    Google Scholar 

  • Birkhead TR, Møller AP (1992) Sperm competition in birds. Academic, London

    Google Scholar 

  • Bouwman KM, Burke T, Komdeur J (2006) How female reed buntings benefit from extrapair mating behaviour: testing hypotheses through patterns of paternity in sequential broods. Mol Ecol 15:2589–2600

    CAS  PubMed  Google Scholar 

  • Bouwman KM, Van Dijk RE, Wijmenga JJ, Komdeur J (2007) Older male reed buntings are more successful at gaining extrapair fertilizations. Anim Behav 73:15–27

    Google Scholar 

  • Buchman M, Helm B, Rothery P, Flinks H (2009) Auswirkungen von Spätbruten auf Mauser und Rückkehrrate bei einem Weitstreckenzieher, dem Steinschmätzer (Oenanthe oenanthe). Die Vogelwarte 47:125–133

    Google Scholar 

  • Buchmann M (2001) Die Brutbiologie des Steinschmätzers (Oenanthe oenanthe) auf intensiv genutzen Flächen in Rheinland-Pfalz. Die Vogelwarte 41:1–17

    Google Scholar 

  • Charmantier A, Blondel J, Perret P, Lambrechts MM (2004) Do extrapair paternities provide genetic benefits for female blue tits Parus caeruleus? J Avian Biol 35:524–532

    Google Scholar 

  • Coltman DW, Pilkington JG, Smith JA, Pemberton JM (1999) Parasite-mediated selection against inbred soay sheep in a freeliving island population. Evolution 53:1259–1267

    PubMed  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, West Sussex

    Google Scholar 

  • Currie DR, Burke T, Whitney RL, Thompson DBA (1998) Male and female behaviour and extrapair paternity in the wheatear. Anim Behav 55:689–703

    CAS  PubMed  Google Scholar 

  • Delingat J, Bairlein F, Hedenstrom A (2008) Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in northern wheatears (Oenanthe oenanthe). Behav Ecol Sociobiol 62:1069–1078

    Google Scholar 

  • Dietrich-Bischoff VD, Schmoll T, Winkel W, Krackow S, Lubjuhn T (2006) Extrapair paternity, offspring mortality and offspring sex ratio in the socially monogamous coal tit (Parus ater). Behav Ecol Sociobiol 60:563–571

    Google Scholar 

  • Foerster K, Delhey K, Johnsen A, Lifjeld JT, Kempenaers B (2003) Females increase offspring heterozygosity and fitness through extrapair matings. Nature 425:714–717

    CAS  PubMed  Google Scholar 

  • Fossøy F, Johnsen A, Lifjeld JT (2007) Multiple genetic benefits of female promiscuity in a socially monogamous passerine. Evolution 62:145–156

    PubMed  Google Scholar 

  • Freeman S, Jackson WM (1990) Univariate metrics are not adequate to measure avian body size. Auk 107:69–74

    Google Scholar 

  • Fridolfsson AK, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121

    Google Scholar 

  • Garvin JC, Abroe B, Pedersen MC, Dunn PO, Whittingham LA (2006) Immune response of nestling warblers varies with extrapair paternity and temperature. Mol Ecol 15:3833–3840

    CAS  PubMed  Google Scholar 

  • Griffith SC (2000) A trade-off between reproduction and condition-dependent sexually selected ornament in the house sparrow Passer domesticus. Proc R Soc Lond B 267:1115–1119

    CAS  Google Scholar 

  • Griffith SC, Immler S (2009) Female infidelity and genetic compatibility in birds: the role of the genetically loaded raffle in understanding the function of extrapair paternity. J Avian Biol 40:97–101

    Google Scholar 

  • Griffith SC, Owens IP, Thuman KA (2002) Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol Ecol 11:2195–2212

    CAS  PubMed  Google Scholar 

  • Johnsen A, Andersen V, Sunding C, Lifjeld JT (2000) Female bluethroats enhance offspring immunocompetence through extrapair copulations. Nature 406:296–299

    CAS  PubMed  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accomodates genotypic error increases success in paternity assignment. Mol Ecol 16:1099–1106

    PubMed  Google Scholar 

  • Kempenaers B, Congdon B, Boag P, Robertson RJ (1999) Extrapair paternity and egg hatchability in tree swallows: evidence for the genetic compatibility hypothesis? Behav Ecol 10:304–311

    Google Scholar 

  • Komdeur J, Pen I (2002) Adaptive sex allocation in birds: the complexities of linking theory and practice. Philos Trans R Soc Lond B 357:373–380

    Google Scholar 

  • Kudernatsch D, Weis-Dootz T, Segelbacher G (2009) Isolation of ten tetranucleotide microsatellite loci in the northern wheatear (Oenanthe oenanthe). Mol Ecol Ressour 9:542–543

    CAS  Google Scholar 

  • Menzel H (1964) Die neue Brehm Bücherei—Der Steinschmätzer (Oenanthe oenanthe). Ziemsen, Wittenberg Lutherstadt

    Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Møller AP, Ninni P (1998) Sperm competition and sexual selection: a meta-analysis of paternity studies in birds. Behav Ecol Sociobiol 43:345–358

    Google Scholar 

  • Ockendon N, Griffith SC, Burke T (2009) Extrapair paternity in an insular population of house sparrows after the experimental introduction of individuals from the mainland. Behav Ecol 20:305–312

    Google Scholar 

  • Perreault S, Lemon RE, Kuhnlein U (1997) Patterns and correlates of extrapair paternity in American redstarts (Setophaga ruticilla). Behav Ecol 8:612–621

    Google Scholar 

  • Petrie M, Kempenaers B (1998) Extrapair paternity in birds: explaining variation between species and populations. Trends Ecol Evol 13:52–58

    CAS  PubMed  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    PubMed  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Schulte-Hostedde AI, Zinner B, Millar JS, Hickling GJ (2005) Restitution of mass-size residuals: validating body condition indices. Ecology 86:155–163

    Google Scholar 

  • Segelbacher G, Kabisch D, Stauss M, Tomiuk J (2005) Extrapair young despite strong pair bonds in the European nuthatch (Sitta europaea). J Ornithol 146:99–102

    Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood tissue samples for DNA analysis. Can J Zool 69:82–90

    CAS  Google Scholar 

  • Sokal R, Rohlf FJ (1994) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  • Stapleton MK, Kleven O, Lifjeld JT, Robertson RJ (2007) Female tree swallows (Tachycieneta bicolor) increase offspring heterozygosity through extrapair mating. Behav Ecol Sociobiol 16:1725–1733

    Google Scholar 

  • Tregenza T, Wedel N (2000) Genetic compatibility, mate choice and patterns of parentage: invited review. Mol Ecol 9:1013–1027

    CAS  PubMed  Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92

    CAS  PubMed  Google Scholar 

  • Westneat DF, Sherman PW, Morton ML (1990) The ecology and evolution of extrapair copulations in birds. In: Power DM (ed) Current ornithology. Plenum, New York, pp 331–369

    Google Scholar 

  • Yasui Y (1998) The ‘genetic benefits’ of female multiple mating considered. Trends Ecol Evol 13:246–250

    CAS  PubMed  Google Scholar 

  • Yasui Y (2001) Female multiple mating as a genetic bet-hedging strategy when mate choice criteria are unreliable. Ecol Res 16:605–616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot Segelbacher.

Additional information

Communicated by F. Bairlein.

Appendix

Appendix

See Table 2.

Table 2 List of families included in this study giving the year of sampling, the number of offspring and extrapair young (EPY) in first and second broods

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudernatsch, D., Buchmann, M., Fiedler, W. et al. Extrapair paternity in a German population of the Northern Wheatear (Oenanthe oenanthe). J Ornithol 151, 491–498 (2010). https://doi.org/10.1007/s10336-009-0486-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-009-0486-z

Keywords

Navigation