Skip to main content
Log in

Acute phase responses of passerine birds: characterization and seasonal variation

  • Review
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

The acute phase response (APR) is the first line of defense that many vertebrates employ during a pathogenic challenge. This response is composed of a suite of physiological, behavioral, hormonal, and metabolic changes that include fever, iron sequestration, anorexia, adipsia, somnolence, and activation of the hypothalamo-pituitary-adrenal (HPA) axis and suppression of the hypothalamo-pituitary-gonadal (HPG) axis. Although well-studied in mammals and domesticated birds, the APR of passerines is virtually unexplored. Here, we characterize the APR in several species of Emberizidae and examine seasonal variation. Captive and free-living sparrows were treated with lipopolysaccharide (LPS), an immunogenic agent that triggers the APR without actually causing infection. LPS treatment activates the HPA axis, suppresses the HPG axis, decreases activity and food and water intake, and induces short-term hypothermia in captives, as well as inhibiting territorial aggressive behavior and song in free-living males. The magnitude of the APR also varies seasonally in males, implicating a tradeoff between physiological processes within particular life-history stages, such as reproduction. The proximate mechanisms underlying this seasonal modulation may include hormonal suppression by the steroid testosterone and seasonal differences in energy stores, which are rapidly depleted to a minimum body mass threshold as a result of APR-induced sickness behavior. We conclude by comparing this variation in APR to seasonal variation of avian stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APP:

Acute phase protein

APR:

Acute phase response

cMGF:

Chicken myelomonocytic growth factor

HPA:

Hypothalamo-pituitary-adrenal

HPG:

Hypothalamo-pituitary-gonadal

HPGH:

Hypothalamo-pituitary-growth hormone

HPT:

Hypothalamo-pituitary-thryoid

IFNγ:

Interferon-gamma

IL-1β:

Interleukin-1-beta

IL-6:

Interleukin-6

IL-17:

Interleukin-17

LPS:

Lipopolysaccharide

TGFβ:

Transforming growth factor-beta

TNFα:

Tumor necrosis factor-alpha

References

  • Andus T, Bauer J, Gerok W (1991) Effect of cytokines on the liver. Hepatology 13:364–375

    Article  PubMed  CAS  Google Scholar 

  • Aubert A (1999) Sickness and behaviour in animals: a motivational perspective. Neurosci Biobehav Rev 23:1029–1036

    Article  PubMed  CAS  Google Scholar 

  • Aubert A, Goodall G, Dantzer R, Gheusi G (1997) Differential effects of lipopolysaccharide on pup retrieving and nest building in lactating mice. Brain Behav Immunol 11:107–118

    Article  CAS  Google Scholar 

  • Avistur R, Yirmiya R (1999) The immunobiology of sexual behavior: gender differences in the suppression of sexual activity during illness. Pharm Biochem Behav 4:787–796

    Google Scholar 

  • Bateman A, Singh A, Kral T, Solomon A (1989) The immune-hypothalamic-pituitary-adrenal axis. Endocr Rev 10:92–112

    PubMed  CAS  Google Scholar 

  • Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15:74–81

    Article  PubMed  CAS  Google Scholar 

  • Benson BN, Calvert CC, Roura E, Klasing KC (1993) Dietary energy source and density modulate the expression of immunologic stress in chicks. J Nutr 123:1714–1723

    PubMed  CAS  Google Scholar 

  • Bertrand S, Criscuolo F, Faivre B, Sorci G (2006) Immune activation increases susceptibility to oxidative tissue damage in Zebra Finches. Funct Ecol 20:1022–1027

    Article  Google Scholar 

  • Besedovsky HO, del Ray A (1996) Immune–neuro–endocrine interactions: facts and hypothesis. Endocr Rev 17:64–102

    Article  PubMed  CAS  Google Scholar 

  • Bilbo SD, Drazen DL, Quan N, He L, Nelson RJ (2002) Short day lengths attenuate the symptoms of infection in Siberian hamsters. Proc R Soc Lond B 269:447–454

    Article  Google Scholar 

  • Blalock JE (1994) The syntax of immune-neuroendocrine communication. Immunol Today 15:504–511

    Article  PubMed  CAS  Google Scholar 

  • Blatteis CM (2006) Endotoxic fever: new concepts of its regulation suggest new approaches to its management. Pharm Therap 111:194–223

    Article  CAS  Google Scholar 

  • Bonneaud C, Mazuc J, Gonzalez G, Haussy C, Chastel O, Faivre B, Sorci G (2003) Assessing the cost of mounting an immune response. Am Nat 161:367–379

    Article  PubMed  Google Scholar 

  • Bosmann HB, Hales KH, Li Z, Liu Z, Stocco DM, Hales DB (1996) Acute in vivo inhibition of testosterone by endotoxin parallels loss of steroidogenic acute regulatory (StAR) protein in leydig cells. Endocrinology 137:4522–4525

    Article  PubMed  CAS  Google Scholar 

  • Casto JM, Nolan Jr. V, Ketterson ED (2001) Steroid hormones and immune function: experimental studies in wild and captive dark-eyed juncos (Junco hyemalis). Am Nat 157:408–420

    Article  PubMed  CAS  Google Scholar 

  • Curtis MJ, Flack IH (1980) The effect of Escherichia coli endotoxins on the concentrations of corticosterone and growth hormone in the plasma of the domestic fowl. Res Vet Sci 28:123–127

    PubMed  CAS  Google Scholar 

  • Dantzer R (2001) Cytokine-induced sickness behavior: where do we stand? Brain Behav Immunol 15:7–24

    Article  CAS  Google Scholar 

  • Dantzer R, Bluthé R, Kent S, Goodall G (1993) Behavioral effects of cytokines: an insight into mechanisms of sickness behavior. In: DeSouza ED (ed) Neurobiology of cytokines. Academic, San Diego

    Google Scholar 

  • Dantzer R, Bluthé R, Laye S, Bret-Dibat J, Parnet P, Kelley K (1998) Cytokines and sickness behavior. Ann NY Acad Sci 840:586–590

    Article  PubMed  CAS  Google Scholar 

  • Delers F, Strecker G, Engler R (1988) Glycosylation of chicken haptoglobin: isolation and characterization of three molecular variants and studies of their distribution in hen plasma before and after turpentine-induced inflammation. Biochem Cell Biol 66:208–217

    Article  PubMed  CAS  Google Scholar 

  • Dhabhar FS (2002) A hassle a day may keep the doctor away: stress and the augmentation of immune function. Integ Comp Biol 42:556–564

    Article  Google Scholar 

  • Digby MR, Lowenthal JW (1995) Cloning and expression of the chicken interferon-gamma gene. J Interferon Cytokine Res 15:939–945

    PubMed  CAS  Google Scholar 

  • Frafield V, Kaplanski J (1998) Brain eicosanoids and LPS fever: species and age differences. Prog Brain Res 115:141–146

    Google Scholar 

  • Gehad AE, Lillehoj HS, Hendricks IIIGL, Mashaly MM (2002) Initiation of humoral immunity. I. The role of cytokines and hormones in the initiation of humoral immunity using T-independent and T-dependent antigens. Dev Comp Immunol 26:751–759

    Article  PubMed  CAS  Google Scholar 

  • Graham AL, Allen JE, Read AF (2005) Evolutionary causes and consequences of immunopathology. Annu Rev Ecol Syst 36:373–393

    Article  Google Scholar 

  • Hart BL (1988) Biological basis of the behavior of sick animals. Neurosci Res Rev 12:151–158

    Google Scholar 

  • Ilmonen P, Taarna T, Hasselquist D (2000) Experimentally activated immune defense in female pied flycatchers results in reduced breeding success. Proc R Soc Lond B 267:665–670

    Article  CAS  Google Scholar 

  • Johnson RW (2002) The concept of sickness behavior: a brief chronological account of four key discoveries. Vet Imm Immunopath 87:443–450

    Article  CAS  Google Scholar 

  • Johnson RW, Curtis MJ, Dantzer R, Bahr JM, Kelley KW (1993) Sickness behavior in birds caused by peripheral or central injection of endotoxin. Physiol Behav 53:343–348

    Article  PubMed  CAS  Google Scholar 

  • Johnson RW, Propes MJ, Shavit Y (1996) Corticosterone modulates behavioral and metabolic effects of lipopolysaccharide. Am J Physiol 270:R192–R198

    PubMed  CAS  Google Scholar 

  • Jones CA, Edens FW, Denbow DM (1983) Influence of age on the temperature response of chickens to Escherichia coli and Salmonella typhimurium endotoxins. Poult Sci 62:1553–1558

    PubMed  CAS  Google Scholar 

  • Kaiser P, Mariani P (1999) Promoter sequence, exon:intron structure, and synteny of genetic location show that a chicken cytokine with T-cell proliferative activity is IL2 and not IL15. Immunogenetics 49:26–35

    Article  PubMed  CAS  Google Scholar 

  • Kaiser P, Rothwell L, Avery S, Balu S (2004) Evolution of the interleukins. Dev Comp Immunol 28:375–394

    Article  PubMed  CAS  Google Scholar 

  • Kastin NW, Martin JB (1982) Altered release of growth hormone and thyrotropin induced by endotoxin in the rat. Am J Physiol 43:E332–E337

    Google Scholar 

  • Kent S, Bluthé R, Kelley KW, Dantzer R (1992) Sickness behavior as a new target for drug development. Trends Pharmacol Sci 13:24–28

    Article  PubMed  CAS  Google Scholar 

  • Ketterson ED, Nolan Jr. V (1999) Adaptation, exaptation, and constraint: a hormonal perspective. Am Nat 154:S4–S25

    Article  Google Scholar 

  • Klasing KC (1984) Effect of inflammatory agents and interleukin 1 on iron and zinc metabolism. Am J Physiol 247:R901–R904

    PubMed  CAS  Google Scholar 

  • Klasing KC (1991) Avian inflammatory response: mediation by macrophages. Poult Sci 70:1176–1186

    PubMed  CAS  Google Scholar 

  • Klasing KC (1994) Avian leukocytic cytokines. Poult Sci 73:1035–1043

    PubMed  CAS  Google Scholar 

  • Klasing KC (2004) The costs of immunity. Acta Zool Sinica 50:961–969

    CAS  Google Scholar 

  • Klasing KC, Austic RE (1994a) Changes in protein degradation in chickens due to an inflammatory challenge. Proc Soc Exp Biol Med 176:292–296

    Google Scholar 

  • Klasing KC, Austic RE (1994b) Changes in protein synthesis due to an inflammatory challenge. Proc Soc Exp Biol Med 176:285–291

    Google Scholar 

  • Klasing KC, Laurin DE, Peng RK, Fry DM (1987) Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. J Nutr 117:1629–1637

    PubMed  CAS  Google Scholar 

  • Klein SL, Nelson RJ (1999) Activation of the immune–endocrine system with lipopolysaccharide reduces affiliative behaviors in voles. Behav Neurosci 113:1042–1048

    Article  PubMed  CAS  Google Scholar 

  • Kluger MJ (1979) Fever. Its biology, evolution and function. Princeton University Press, Princeton

    Google Scholar 

  • Kluger MJ, Rothenberg BA (1979) Fever and reduced iron: their interaction as a host defense response to bacterial infection. Science 203:374–376

    Article  PubMed  CAS  Google Scholar 

  • Kluger MJ, Kozak W, Conn CA, Leon LR, Soszynski D (1998a) Role of fever in disease. Ann NY Acad Sci 856:224–233

    Article  PubMed  CAS  Google Scholar 

  • Kluger MJ, Kozak W, Leon LR, Soszynski D, Conn CA (1998b) Fever and antipyresis. Prog Brain Res 115:465–475

    Article  PubMed  CAS  Google Scholar 

  • Kondo K, Harbuz MS, Levy A, Lightman SL (1997) Inhibition of the hypothalamic-pituitary-thryoid axis in response to lipopolysaccharide is independent of changes in circulating corticosteroids. Neuroimmunomodulation 4:188–194

    PubMed  CAS  Google Scholar 

  • Konsman JP, Dantzer R (2001) How the immune and nervous systems interact during disease-associated anorexia. Nutrition 17:664–668

    Article  PubMed  CAS  Google Scholar 

  • Koutsos EA, Klasing KC (2001) The acute phase response in Japanese quail (Coturnix coturnix japonica). Comp Biochem Physiol C 128:255–263

    Article  CAS  Google Scholar 

  • Kyriazakis I, Tolkamp BJ, Hutchings MR (1998) Towards a functional explanation for the occurrence of anorexia during parasitic infections. Anim Behav 56:265–274

    Article  PubMed  Google Scholar 

  • Langhans W (2000) Anorexia of infection: current prospects. Nutrition 16:996–1005

    Article  PubMed  CAS  Google Scholar 

  • Lee KA, Martin LB, Wikelski M (2005) Responding to inflammatory challenges is less costly for a successful avian invader, the house sparrow (Passer domesticus), than its less-invasive congener. Oecologia 145:244–251

    Article  PubMed  Google Scholar 

  • Leshchinksy TV, Klasing KC (2001) Divergence of the inflammatory respone in two types of chickens. Dev Comp Immunol 25:629–638

    Article  Google Scholar 

  • Leshchinksy TV, Klasing KC (2003) Profile of chicken cytokines induced by lipopolysaccharide is modulated by dietary alpha-tocopheryl acetate. Poult Sci 82:1266–1273

    Google Scholar 

  • Leutz A, Damm K, Sterneck E, Kowenz E, Ness S, Frank R, Gausepohl H, Pan YE, Smart J, Hayman M et al. (1989) Molecular cloning of the chicken myelomonocytic growth factor (cMGF) reveals relationship to interleukin 6 and granulocyte colony stimulating factor. EMBO J 8:175–181

    PubMed  CAS  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology. Just what is the cost of immunity? Oikos 88:87–98

    Article  Google Scholar 

  • Maloney SK, Gray DA (1998) Characteristics of the febrile response in Pekin ducks. J Comp Physiol B 168:177–182

    Article  PubMed  CAS  Google Scholar 

  • Martin LB, Hasselquist D, Wikelski M (2006) Investment in immune defense is linked to pace of life in house sparrows. Oecologia 147:565–575

    Article  PubMed  Google Scholar 

  • Martin LB, Weil ZM, Nelson RJ (2006) Refining approaches and diversifying directions in ecoimmunology. Integ Comp Biol 46:1030–1039

    Article  CAS  Google Scholar 

  • Millet S, Bennett J, Lee KA, Hau M, Klasing KC (2007) Quantifying and comparing constitutive immunity across avian species. Dev Comp Immunol 31:188–201

    Article  PubMed  CAS  Google Scholar 

  • Min W, Lillehoj HS (2002) Isolation and characterisation of chicken interleukin-17 cDNA. J Interferon Cyt Res 22:1123–1128

    Article  CAS  Google Scholar 

  • Munck A, Guyre PM, Holbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endo Rev 5:25–44

    CAS  Google Scholar 

  • Murray MJ, Murray AB (1979) Anorexia of infection as a mechanism of host defense. Am J Clin Nutr 32:593–596

    PubMed  CAS  Google Scholar 

  • Nakamura I, Mitarai Y, Yoshioka M, Koizumi N, Shibahara T, Nakajima Y (1998) Serum levels of interlekin-6, alpha-acid glycoprotein, and corticosterone in two-week-old chickens inoculated with Escherichia coli lipopolysaccharide. Poult Sci 77:908–911

    PubMed  CAS  Google Scholar 

  • Nakano K, Suzuki S, Oh C (1987) Significance of increased secretion of glucocorticoids in mice and rats injected with bacterial endotoxin. Brain Behav Immunol 1:159–172

    Article  CAS  Google Scholar 

  • Nomoto S (1996) Diurnal variations in fever induced by intravenous LPS injection in pigeons. Pflugers Arch 431:987–989

    PubMed  CAS  Google Scholar 

  • Norris K, Evans MR (2000) Ecological immunology: Life history trade-offs and immune defense in birds. Behav Ecol 11:19–26

    Article  Google Scholar 

  • Owen-Ashley NT (2004) Environmental regulation of immune-endocrine phenomena in songbirds. PhD Dissertation. Dept. of Zoology, University of Washington, Seattle

  • Owen-Ashley NT, Wingfield JC (2006) Seasonal modulation of sickness behavior in free-living northwestern song sparrows (Melospiza melodia morphna). J Exp Biol 209:3062–3070

    Article  PubMed  Google Scholar 

  • Owen-Ashley NT, Hasselquist D, Wingfield JC (2004) Androgens and the immunocompetence handicap hypothesis: unraveling direct and indirect pathways of immunosuppression in song sparrows. Am Nat 164:490–505

    Article  PubMed  Google Scholar 

  • Owen-Ashley NT, Turner M, Hahn TP, Wingfield JC (2006) Hormonal, behavioral, and thermoregulatory responses to bacterial lipopolysaccharide in captive and free-living White-crowned Sparrows (Zonotrichia leucophrys gambelii). Horm Behav 49:15–29

    PubMed  CAS  Google Scholar 

  • Parmentier HK, Walraven M, Nieuwland MGB (1998) Antibody responses and body weights of chicken lines selected for high and low humoral responsivenss to sheep red blood cells. 1. Effect of Escherichia coli lipopolysaccharide. Poult Sci 77:248–255

    PubMed  CAS  Google Scholar 

  • Plata-Salamán CR (1996) Anorexia during acute and chronic disease. Nutrition 12:69–78

    Article  PubMed  Google Scholar 

  • Råberg L, Grahn M, Hasselquist D, Svensson E (1998) On the adaptive significance of stress-induced immunosuppression. Proc R Soc Lond B 265:1637–1641

    Article  Google Scholar 

  • Råberg L, Nilsson J, Ilmonen P, Stjernman M, Hasselquist D (2000) The cost of an immune response: vaccination reduces parental effort. Ecol Lett 3:382–386

    Article  Google Scholar 

  • Ricklefs RE, Wikelski M (2002) The physiology/life-history nexus. Trends Ecol Evol 17:462–468

    Article  Google Scholar 

  • Rivier C (1990) Role of endotoxin and interleukin-1 in modulating ACTH, LH and sex steroid secretion. Adv Exp Med Biol 275:295–301

    Google Scholar 

  • Rivier C, Vale W (1990) Cytokines act within the brain to inhibit luteinizing hormone secretion and ovulation in the rat. Endocrinology 127:849–856

    PubMed  CAS  Google Scholar 

  • Rivier C, Chizzonite R, Vale W (1989) In the mouse, the activation of the hypothalamic-pituitary-adrenal axis by a lipopolysaccharide (endotoxin) is mediated by interleukin-1. Endocrinology 125:2800–2805

    Article  PubMed  CAS  Google Scholar 

  • Roitt IM, Brostoff AM, Male DK (1998) Immunology. Mosby, London

    Google Scholar 

  • Romero LM (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128:1–24

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM, Romero LM, Munck AU (2000) How do glucocorticoids influence stress-responses? Integrating permissive, suppressive, stimulatory, and adaptive actions. Endocr Rev 21:55–89

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Klaas R, Kaspers B, Staeheli P (2001) Chicken interleukin-6 cDNA structure and biological properties. Eur J Biochem 268:4200–4206

    Article  PubMed  CAS  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321

    Article  Google Scholar 

  • Sijben JWC, Klasing KC, Schrama JW, Parmentier HK, van der Poel JJ, Savelkoul HFJ, Kaiser P (2003) Early in vivo cytokine genes expression in chickens after challenge with Salmonella typhimurium lipopolysaccharide and modulation by dietary n-3 polyunsaturated fatty acids. Dev Comp Immunol 27:611–619

    Article  PubMed  CAS  Google Scholar 

  • Sundick RS, Gill-Dixon CA (1997) A cloned chicken lymphokine homologous to both mammalian IL-2 and IL-15. J Immunol 159:720–725

    PubMed  CAS  Google Scholar 

  • Wan W, Janz L, Vriend CY, Sorenson CM, Greenberg AH, Nance DM (1993) Differential induction of c-Fos immunoreactivity in hypothalamus and brain stem nuclei following central and peripheral administration of endotoxin. Brain Res Bull 32:581–587

    Article  PubMed  CAS  Google Scholar 

  • Weinberg ED (1974) Iron and susceptibility to infectious disease. Science 184:952–955

    Article  PubMed  CAS  Google Scholar 

  • Weining KC, Sick C, Kaspers B, Staeheli P (1998) A chicken homolog of mamalian interleukin-1ß. Eur J Biochem 258:994–1000

    Article  PubMed  CAS  Google Scholar 

  • Wicher KB, Fries E (2006) Haptoglobin, a hemoglobin-binding plasma protein, is present in bony fish and mammals but not in frog and chicken. Proc Natl Acad Sci USA 103:4168–4173

    Article  PubMed  CAS  Google Scholar 

  • Wing EJ, Young JB (1980) Acute starvation protects mice against Listeria monocytogenes. Infect Immun 28:771–776

    PubMed  CAS  Google Scholar 

  • Wingfield JC (1994) Regulation of territorial behavior in the sedentary song sparrow, Melospiza melodia morphna. Horm Behav 28:1–15

    Article  PubMed  CAS  Google Scholar 

  • Wingfield JC (2003) Control of behavioural strategies for capricious environments. Anim Behav 66:807–816

    Article  Google Scholar 

  • Wingfield JC, Maney DL, Breuner CW, Jacobs JD, Lynn S, Ramenofsky M, Richardson RD (1998) Ecological bases of hormone-behavior interactions: the “emergency life history stage”. Am Zool 38:191–206

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah T. Owen-Ashley.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen-Ashley, N.T., Wingfield, J.C. Acute phase responses of passerine birds: characterization and seasonal variation. J Ornithol 148 (Suppl 2), 583–591 (2007). https://doi.org/10.1007/s10336-007-0197-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-007-0197-2

Keywords

Navigation