Skip to main content

Advertisement

Log in

Recent changes in allometric relationships among morphological traits in the dipper (Cinclus cinclus)

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Organisms are responding to recent climate warming by changing different aspects of their biology, including morphology. The present work examines the way in which dipper (Cinclus cinclus) morphology has varied over the past 20 years (1985–2005) in Sierra Nevada (south-eastern Spain). Tarsus length has decreased, but wing and tail length have increased in the same period. These opposite trends have provoked changes in the allometric relationships among the different parts of the body in the dipper. A decrease in body size is predicted by Bergmann’s rule, and similar results have been found in other birds. However, although this study found a decrease in tarsus length, no change was found for body mass. The increase in wing and tail length may be related to a variation in the trophic niche in response to the decrease in water volume of rivers that occurred during the study period. Other studies show that the dipper’s diet varies with water flow, and water flow has decreased in the study area as a consequence of climatic warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnell N, Liu C (2001) Hydrology and water resources. In: IPCC (eds) Climate change 2001: impacts, adaptation, and vulnerability. Cambridge University Press, Cambridge, pp 191–233

  • Ashton KG (2002) Patterns of within-species body size variation of birds: strong evidence for Bergmann’s rule. Global Ecol Biogeogr 11:505–523

    Google Scholar 

  • Campos F, Gutiérrez-Corchero F, Hernández MA, Rivas JM, López-Fidalgo J (2005a) Biometric differences among the Dipper Cinclus cinclus populations of Spain. Acta Ornithol 40:87–93

    Google Scholar 

  • Campos F, Gutiérrez-Corchero F, López-Fidalgo J, Hernández MA (2005b) Un nuevo criterio para sexar mirlos acuáticos Cinclus cinclus en la Península Ibérica. Rev Catalana Ornitol 21:43–46

    Google Scholar 

  • Chandler CR (1995) Practical considerations in the use of simultaneous inference for multiple tests. Anim Behav 49:524–527

    Google Scholar 

  • Cotton PA (2003) Avian migration phenology and global climate change. Proc Nat Acad Sci U S A 100:12219–12222

    CAS  Google Scholar 

  • Crick HQP, Dudley C, Glue DE, Thomson DL (1997) UK birds are laying eggs earlier. Nature 388:526–526

    CAS  Google Scholar 

  • Gosler AG (2002) Strategy and constraint in the winter fattening response to temperature in the great tit Parus major. J Anim Ecol 71:771–779

    Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    CAS  PubMed  Google Scholar 

  • Hegelbach J (2001) Wassertemperatur und Blütenphänologie als Anzeiger des früheren Brutbeginns der Wasseramsel (Cinclus cinclus) im schweizerischen Mittelland. J Ornithol 142:284–294

    Google Scholar 

  • Houghton J (2004) Global warming, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hughes L (2000) Biological consequences of global warming: is the signal already. Trends Ecol Evol 15:56–61

    CAS  PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacob EM, Marshall SD, Uetz GW (1996) Estimating fitness: a comparison of body condition indices. Oikos 77:61–67

    Google Scholar 

  • Jakober H, Stauber W (2000) Werden die neuntiiter (Lanius collurio) kleiner? J Ornithol 141:408–417

    Google Scholar 

  • Johnston R (1969) Character variation and adaptation in European sparrows. Syst Zool 18:206–231

    Google Scholar 

  • Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–199

    Google Scholar 

  • Jones PD, Osborne TJ, Briffa KR (2001) The evolution of the climate over the last millennium. Science 292:662–667

    CAS  PubMed  Google Scholar 

  • López Alcázar V, Vázquez Pumariño X, Gómez-Serrano MA (2003) Mirlo acuático Cinclus cinclus. In: Martí R, del Moral JC (eds) Atlas de las aves reproductoras de España. DGCN-MAM/SEO, Madrid, pp 406–407

  • Margalef R (1995) Ecología. Omega, Barcelona

  • Meiri S, Dayan T (2003) On the validity of Bergmann’s rule. J Biogeogr 30:331–351

    Google Scholar 

  • Millien V, Lyons SK, Olson L, Smith FA, Wilson AB, Yom-Tov Y (2006) Ecotypic variation in the context of global climate change: revisiting the rules. Ecol Lett 9:853–869

    PubMed  Google Scholar 

  • Møller AP (2002) North Atlantic Oscillation (NAO) effects of climate on the relative importance of first and second clutches in a migratory passerine bird. J Anim Ecol 71:201–210

    Google Scholar 

  • Moran MD (2003) Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos 100:403–405

    Google Scholar 

  • Moreno-Rueda G (2003) The capacity to escape from predators in Passer domesticus: an experimental study. J Ornithol 144:438–444

    Google Scholar 

  • Nakagawa S (2004) A farewell to Bonferroni: the problem of low statistical power and publication bias. Behav Ecol 15:1044–1045

    Google Scholar 

  • OchociÅ„ska D, Taylor JRE (2003) Bergmann’s rule in shrews: geographical variation of body size in Palearctic Sorex species. Biol J Linn Soc 78:365–381

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  PubMed  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    CAS  PubMed  Google Scholar 

  • Sæther B-E, Tufto J, Engen S, Jerstad K, Røstad OW, Skatan JE (2000) Population dynamical consequences of climate change for a small temperate songbird. Science 287:854–856

    PubMed  Google Scholar 

  • Sanz JJ, Potti J, Moreno J, Merino S, Frías O (2003) Climate change and fitness components of a migratory bird breeding in the Mediterranean region. Global Change Biol 9:461–472

    Google Scholar 

  • Searcy WA, Peters S, Nowicki S (2004) Effects of early nutrition on growth rate and adult size in song sparrows Melospiza melodia. J Avian Biol 35:269–279

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  • Taylor AJ, O’Halloran J (2001) Diet of Dippers Cinclus cinclus during an early winter spate and the possible implications for Dipper populations subjected to climate change. Bird Study 48:173–179

    Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213–213

    CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, Ferreira de Siqueira M, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L, Ortega-Huerta MA, Peterson AT, Phillips OL, Williams SE (2004) Extinction risk from climate change. Nature 427:145–148

    CAS  PubMed  Google Scholar 

  • Tornberg R, Mönkkönen M, Pahkala M (1999) Changes in diet and morphology of Finnish goshawks from 1960s to 1990s. Oecologia 121:369–376

    CAS  PubMed  Google Scholar 

  • Tryjanowski P, Sparks TH, Rybacki M, Berger L (2006) Is body size of the water frog Rana esculenta complex responding to climate change? Naturwissenschaften 93:110–113

    CAS  PubMed  Google Scholar 

  • Tyler SJ, Ormerod SJ (1994) The dippers. Poyser, London

    Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    CAS  PubMed  Google Scholar 

  • Yom-Tov Y (2001) Global warming and body mass decline in Israeli passerine birds. Proc R Soc Lond B 268:947–952

    CAS  Google Scholar 

  • Yom-Tov Y, Yom-Tov S (2004) Climatic change and body size in two species of Japanese rodents. Biol J Linn Soc 82:263–267

    Google Scholar 

  • Yom-Tov Y, Yom-Tov S (2006) Decrease in body size of Danish goshawks during the twentieth century. J Ornithol 147:644–647

    Google Scholar 

  • Yom-Tov Y, Yom-Tov S, Wright J, Thorne CJR, Du Feu R (2006) Recent changes in body weight and wing length among some British passerine birds. Oikos 112:91–101

    Google Scholar 

Download references

Acknowledgements

Manuel Pizarro collaborated during the fieldwork. Comments by José Antonio Hódar, Rafael Morales-Baquero, Juan Manuel Pleguezuelos and anonymous referees improved the manuscript. David Nesbitt improved the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Moreno-Rueda.

Additional information

Communicated by F. Bairlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Rueda, G., Rivas, J.M. Recent changes in allometric relationships among morphological traits in the dipper (Cinclus cinclus). J Ornithol 148, 489–494 (2007). https://doi.org/10.1007/s10336-007-0184-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-007-0184-7

Keywords

Navigation