Skip to main content

Advertisement

Log in

Modelling breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus) in relation to topography, disturbance, climate and land use at different spatial scales

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Predictive models on breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus; Aves: Accipitridae) have been performed at four different spatial scales in Castellón province, East of Iberian Peninsula. The scales considered were: (1) nest site scale (1×1 km2 Universal Transverse Mercator (UTM) square containing the nest); (2) near nest environment (3×3 km2 UTM square); (3) home range scale (5×5 km2 UTM square); and (4) landscape level scale (9×9 km2 UTM square containing the above mentioned ones). Topographic, disturbance, climatic and land use factors were measured on a geographic information system (GIS) at occupied and unoccupied UTM squares. Logistic regression was performed by means of a stepwise addition procedure. We tested whether inclusion of new subset of variables improved the models by increasing the area under the receiver operator characteristic plot. At nest site scale, only topographic factors were considered as the most parsimonious predictors. Probability of species occurrence increases with slope in craggy areas at lower altitudes. At the 3×3 km2 scale, climate and disturbance variables were included. At home range and landscape level scales, models included climate, disturbance, topographic and land use factors. Higher temperatures in January, template ones in July, higher rainfall in June, lower altitudes and higher slope in the sample unit increase probability of occurrence of Bonelli’s eagle at broadest scales. The species seems to prefer disperse forests, scrubland and agricultural areas. From our results, we consider that there is a hierarchical framework on habitat selection procedure. We suggest that it is necessary to analyse what key factors are affecting Bonelli’s eagle nest-site selection at every study area to take steps to ensure appropriate conservation measures. The combination of regression modelling and GIS will become a powerful tool for biodiversity and conservation studies, taking into account that application depends on sampling design and the model assumptions of the statistical methods employed. Finally, predictive models obtained could be used for the efficient monitoring of this scarce species, to predict range expansions or identify suitable locations for reintroductions, and also to design protected areas and to help on wildlife management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium of information theory. Akademiai Kiado, pp 267–281

  • Arroyo B, Ferreiro E, Garza V (1995) El Águila Perdicera (Hieraaetus fasciatus) en España. Censo, reproducción y conservación. Colección Técnica, ICONA. Ministerio de Agricultura, Pesca y Alimentación, Madrid

  • Arroyo B, Garza V (1995) Factores de regresión del Águila Perdicera (Hieraaetus fasciatus) en España. I Congreso Internacional de Rapaces del Holártico, Resúmenes, Mérida

  • Balbontín J, Penteriani V, Ferrer M (2003) Variations in the age of mates as an early signal of changes in population trends? The case of Bonelli’s eagle in Andalusia. Biol Conserv 109:417–423

    Google Scholar 

  • Bevers M, Flather CH (1999) The distribution and abundance of population limits at multiple spatial scales. J Anim Ecol 68:976–987

    Google Scholar 

  • BirdLife International (2004) Species factsheet: Hieraaetus fasciatus. Downloaded from http://www.birdlife.org on 2/8/2005

  • BirdLife International/European Bird Census Council (2000) European bird populations: estimates and trends. BirdLife International, Cambridge. BirdLife Conservation Series No. 10

  • Bowerman BL, O'Connell RT (1990) Linear statistical models: an applied approach, 2nd edn. Duxbury, Belmont

    Google Scholar 

  • Bradbury RB, Kyrkos A, Morris AJ, Clark SC, Perkins AJ, Wilson JD (2000) Habitat selection and breeding success of yellowhammers on lowland farmland. J Appl Ecol 37:789–805

    Google Scholar 

  • Buckland ST, Elston A (1993) Empirical models for the spatial distribution of wildlife. J Appl Ecol 30:478–495

    Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inferences. A practical information-theoretic approach, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Bustamante J, Seoane J (2004) Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps. J Biogeogr 31:295–306

    Google Scholar 

  • Cabeza M, Araújo MB, Wilson RJ, Thomas CD, Cowley MJR, Moilanen A (2004) Combinig probabilities of occurrence with spatial reserve design. J Appl Ecol 41:252–262

    Google Scholar 

  • Carrete M, Sánchez-Zapata JA, Martínez JE, Palazón JA, Calvo JF (2001) Distribución espacial del Águila Azor-Perdicera (Hieraaetus fasciatus) y del Águila Real (Aquila chrysaetos) en la región de Murcia. Ardeola 48:175–182

    Google Scholar 

  • Carrete M, Martínez JE, Sánchez MA, Calvo JF, Sánchez-Zapata JA (2002) Factors influencing the decline of a Bonelli’s eagle (Hieraaetus fasciatus) population in southeastern Spain: demography, habitat or competition? Biodivers Conserv 11:975–985

    Google Scholar 

  • Cramp S, Simmons KEL (1980) The birds of Western Paleartic, vol 2. Oxford University Press, Oxford

  • Del Hoyo J, Elliot A, Sargatal J (1994) Handbook of the birds of the world, vol 2. New world vultures to Guineafowl. Lynx, Barcelona

  • Edwards AL (1985) Multiple regression and the analysis of variance and covariance, 2nd edn. Freeman, San Francisco

    Google Scholar 

  • Engler R, Guisan A, Rechsteiner L (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J Appl Ecol 41:263–274

    Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment prediction errors in conservation presence–absence models. Environ Conserv 24:38–49

    Google Scholar 

  • Frair J, Nielsen SE, Merrill EH, Lele SR, Boyce MS, Munro RHM, Stenhouse GB, Beyer HL (2004) Removing GPS collar bias in habitat selection studies. J Appl Ecol 41:201–212

    Google Scholar 

  • Gibson LA, Wilson BA, Cahill DM, Hill J (2004) Spatial prediction of rufous bristlebird habitat in a coastal heathland: a GIS-based approach. J Appl Ecol 41:213–223

    Google Scholar 

  • Gil-Sánchez JM, Molino F, Valenzuela G (1994) Parámetros reproductivos y de alimentación del Águila real (Aquila crhysaetos) y del Águila perdicera (Hieraaetus fasciatus) en la provincia de Granada. Aegypius 12:47–52

    Google Scholar 

  • Gil-Sánchez JM, Molino-Garrido F, Valenzuela-Serrano G (1996) Selección de hábitat de nidificación por el Águila perdicera (Hieraaetus fasciatus) en Granada (SE de España). Ardeola 43:189–197

    Google Scholar 

  • Gil-Sánchez JM, Molino F, Valenzuela G, Moleón M (2000) Demografía y alimentación del Águila-azor Perdicera (Hieraaetus fasciatus) en la provincia de Granada. Ardeola 47:69–75

    Google Scholar 

  • Gil-Sánchez JM, Moleón M, Otero M, Bautista J (2004) A nine-year study of successful breeding in a Bonelli’s eagle population in southeast Spain: a basis for conservation. Biol Conserv 118:685–694

    Google Scholar 

  • Grand J, Cushman SA (2003) A multi-scale analysis of species–environment relationships: breeding birds in a pitch pine-scrub oak (Pinus rigidaQuercus ilicifolia) community. Biol Conserv 112:307–317

    Google Scholar 

  • Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100

    Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Google Scholar 

  • Hagan MT, Demuth HP, Beale M (1996) Neural network design. PWS Publishing, Boston

    Google Scholar 

  • Hagemeijer EJM, Blair MJ (1997) The EBCC atlas of European breeding birds: their distribution and abundance. Poyser, London

    Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. Macmillan, New York

    Google Scholar 

  • Hirzel AH, Hausser J, Chessel D, Perrin N (2002). Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83:2027–2036

    Google Scholar 

  • Hobson KA, Kirk DA, Smith AR (2000) A multivariate analysis of breeding bird species of western and central Canadian boreal forests: stand and spatial effects. Ecoscience 7:267–280

    Google Scholar 

  • Hosmer DW, Lemeshow S (2000) Applied logistic regression analysis, 2nd edn. Wiley, New York

    Google Scholar 

  • Jeganathan P, Green RE, Norris K, Vogiatzakis IN, Bartsch A, Wotton SR, Bowden CGR, Griffiths GH, Pain D, Rahmani AR (2004) Modelling habitat selection and distribution of the critically endangered Jerdon’s courser Rhinoptilus bitorquatus in scrub jungle: an application of a new tracking method. J Appl Ecol 41:224–237

    Google Scholar 

  • Johnson DH (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61:65–71

    Google Scholar 

  • Johnson DE (1998) Applied multivariate methods for data analysts. Brooks Cole, Kansas State University, Kansas

    Google Scholar 

  • Johnson CJ, Seip DR, Boyce MS (2004) A quantitative approach to conservation planning: using resource selection functions to map the distribution of mountain caribou at multiple spatial scales. J Appl Ecol 41:238–251

    Google Scholar 

  • Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    PubMed  Google Scholar 

  • Jokimäki J, Huhta E (1996) Effects of landscape matrix and habitat structure on a bird community in northern Finland: a multi-scale approach. Ornis Fennica 73:97–113

    Google Scholar 

  • Jones J (2001) Habitat selection studies in avian ecology: a critical review. Auk 118:557–562

    Google Scholar 

  • Keating KA, Cherry S (2004) Use and interpretation of logistic regression in habitat-selection studies. J Wild Manag 68:774–789

    Google Scholar 

  • Kirk DA, Boutin C, Freemark KE (2001) A multivariate analysis of bird species composition and abundance between crop types and seasons in southern Ontario, Canada. Ecoscience 8:173–184

    Google Scholar 

  • Lehmann A, Overton JMcC, Austin MP (2002a) Regression models for spatial prediction: their role for biodiversity and conservation. Biodivers Conserv 11:2085–2092

    Google Scholar 

  • Lehmann A, Overton JMcC, Leathwick JR (2002b) GRASP: generalized regression analysis and spatial predictions. Ecol Model 157:187–205

    Google Scholar 

  • Levin AS (1992) The problem of pattern and scale in Ecology. Ecology 73:1943–1967

    Google Scholar 

  • Li WJ, Wang ZJ, Ma ZJ, Tang HX (1999) Designing the core zone in a biosphere reserve based on suitable habitats: Yanchang Biosphere Reserve and the red-crowned crane (Grus japonensis). Biol Conserv 90:167–173

    Google Scholar 

  • López-López P, García-Ripollés C, Aguilar JM, García F, Verdejo J (2003) Two-spatial scale multifactor analysis on Bonelli’s eagle (Hieraaetus fasciatus) nest-site selection in the East of Iberian Peninsula. In: Proceedings II Iberian ornithological workshop. Aveiro, Portugal

  • Luck GW (2002) The habitat requirements of the rufous treecreper (Climacteris rufa). II. Validating predictive habitat models. Biol Conserv 105:395–403

    Google Scholar 

  • MacNally R (2000) Regression and model-building in conservation biology, biogeography and ecology: the distinction between and reconciliation of “predictive” and “explanatory” models. Biodivers Conserv 9:655–671

    Google Scholar 

  • Malanson GP, Westman WE, Yan YL (1992) Realized versus fundamental niche functions in a model of chaparral response to climate change. Ecol Model 64:261–277

    Google Scholar 

  • Manel S, Dias J, Buckton ST, Ormenrod SJ (1999) Alternative methods for predicting species distribution: an illustration with Himalayan river birds. J Appl Ecol 36:734–747

    Google Scholar 

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931

    Google Scholar 

  • Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals: statistical design and analysis for field studies, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  • Martí R, Del Moral JC (eds) (2003) Atlas de las Aves Reproductoras de España. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, Madrid

  • Martínez JA, Serrano D, Zuberogoitia I (2003) Predictive models of habitat preferences for the Eurasian eagle owl Bubo bubo: a multiscale approach. Ecography 26:21–28

    Google Scholar 

  • Mañosa S, Real J, Codina J (1998) Selection of settlement areas by juvenile Bonelli’s eagle in Catalonia. J Raptor Res 32:208–214

    Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall/CRC, London

    Google Scholar 

  • Montgomery DC, Peck EA (1982) Introduction to regression analysis. Wiley, New York

    Google Scholar 

  • Nicholls AO (1989) How to make biological survey go further with generalized linear models. Biol Conserv 73:1–17

    Google Scholar 

  • Ontiveros D (1999) Selection of nest cliffs by Bonelli’s eagle (Hieraaetus fasciatus) in southeastern Spain. J Raptor Res 33:110–116

    Google Scholar 

  • Ontiveros D, Pleguezuelos JM (1999) Influence of prey densities in the distribution and breeding success of Bonelli’s eagle (Hieraaetus fasciatus): management implications. Biol Conserv 93:19–25

    Google Scholar 

  • Ontiveros D, Pleguezuelos JM (2003) Physical, environmental and human factors influencing productivity in Bonelli’s eagle Hieraaetus fasciatus in Granada (SE Spain). Biodivers Conserv 12:1193–1203

    Google Scholar 

  • Orians G, Wittenberger J (1991) Spatial and temporal scales in habitat selection. Am Nat 137:29–49

    Google Scholar 

  • Osborne PE, Alonso JC, Bryant RG (2001) Modelling landscape-scale habitat-use using GIS and remote sensing: a case study with great bustards. J Appl Ecol 38:458–471

    Google Scholar 

  • Pearce J, Ferrier S (2000a) An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecol Model 128:127–147

    Google Scholar 

  • Pearce J, Ferrier S (2000b) Evaluating the predictive performance of habitat models development using logistic regression. Ecol Model 133:225–245

    Google Scholar 

  • Penteriani V, Faivre B (1997) Breeding density and landscape-level habitat selection of Common Buzzards (Buteo buteo) in a mountain area (Abruzzo Apennines, Italy). J Raptor Res 31:208–212

    Google Scholar 

  • Poirazidis K, Goutner V, Skartsi T, Stamou G (2004) Modelling nesting habitat as a conservation tool for the Eurasian black vulture (Aegypius monachus) in Dadia Nature Reserve, northeastern Greece. Biol Conserv 118:235–248

    Google Scholar 

  • Pérez-Cueva A (1994) Atlas Climático de la Comunidad Valenciana. Conselleria de Territori i Habitatge. Generalitat Valenciana, Valencia

  • Quereda J, Montón E, Escrig J (1999) El clima de la provincia de Castellón. In: Gimeno MA (ed) La provincia de Castellón. Servicio de Publicaciones, Diputación de Castellón, pp 51–60

  • Real J, Mañosa S, Codina J (1997) Post-nestling dependence period in the Bonelli’s eagle Hieraaetus fasciatus. Ornis Fennica 75:129–137

    Google Scholar 

  • Real J (2004) Águila-azor perdicera, Hieraaetus fasciatus. In: Madroño A, González C, Atienza JC (eds) Red Book of the Birds of Spain. Libro Rojo de las Aves de España. Dirección General para la Biodiversidad-SEO/Birdlife, Madrid

  • Real J, Mañosa S, Codina J (1996) Estatus, Demografía y conservación del Águila perdicera (Hieraaetus fasciatus) en el Mediterráneo. In: Muntaner J, Mayol J (eds) Biología y conservación de las rapaces mediterráneas. Monografía 4 SEO, Madrid, pp 55–62

  • Real J, Mañosa S (1997) Demography and conservation of western European Bonelli’s eagle (Hieraaetus fasciatus) populations. Biol Conserv 79:59–66

    Google Scholar 

  • Rico L, Sánchez-Zapata JA, Izquierdo A, García JR, Morán S, Rico D (1999) Tendencias recientes en las poblaciones del Águila Real Aquila chrysaetos y el Águila-Azor perdicera Hieraaetus fasciatus en la provincia de Valencia. Ardeola 46:235–238

    Google Scholar 

  • Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España. Instituto Nacional para la Conservación de la Naturaleza ICONA, Madrid

    Google Scholar 

  • Sakamoto Y, Ishiguro M, Kitagawa G (1986) Akaike information criterion statistics. KTK Scientific, Tokyo

    Google Scholar 

  • Seoane J, Bustamante J, Díaz-Delgado R (2004) Competing roles for landscape, vegetation, topography and climate in predictive models of bird distribution. Ecol Model 171:209–222

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. Freeman WH and Company, New York

    Google Scholar 

  • SPSS Inc. (1999) Computer program manual. Version 10. 1. SPSS Inc. 1989–1999

  • StatSoft (1998) Statistica for windows (Computer program manual). StatSoft, Tulsa

  • Steenhof K, Kochert MN, McDonald TL (1997) Interactive effects of prey and weather on golden eagle reproduction. J Anim Ecol 66:350–362

    Google Scholar 

  • Store R, Jokimäki J (2003) A GIS-based multi-scale approach to habitat suitability modelling. Ecol Model 169:1–15

    Google Scholar 

  • Suárez-Seoane S, Osborne PE, Alonso JC (2002) Large-scale habitat selection by agricultural steppe birds in Spain: identifying species-habitat responses using generalized additive models. J Appl Ecol 39:755–771

    Google Scholar 

  • Sánchez-Zapata JA, Calvo JF, Carrete M, Martínez JE (2000) Age and breeding success of a Golden Eagle Aquila chrysaetos population in Southeastern Spain. Bird Study 47:235–237

    Google Scholar 

  • Sánchez-Zapata JA, Calvo JF (1999) Raptor distribution in relation to landscape composition in semi-arid Mediterranean habitats. J Appl Ecol 36:254–262

    Google Scholar 

  • Wiens JA (1989a) The ecology of bird communities, vol 1. Foundations and patterns. Cambridge University Press, Cambridge, 539 pp

  • Wiens JA (1989b) Spatial scaling in ecology. Funct Ecol 3:385–397

    Google Scholar 

  • Yanez M, Floater G (2000) Spatial distribution and habitat preferences of the endangered tarantula Brachypelma klaasi (Araneae: Theraphosidae) in Mexico. Biodivers Conserv 9:795–810

    Google Scholar 

Download references

Acknowledgements

We would like to thank P. Mateache and J. Jimenez for their support and valuable suggestions. We are especially grateful to E. Rodriguez for her invaluable help on GIS measurements. ("Conselleria de Territori i Habitatge" provided GIS data shapes). F. Huettmann and an anonymous referee made valuable comments on the manuscript. All the research was compliant with all the laws of Spain where it was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascual López-López.

Additional information

Communicated by F. Bairlein

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-López, P., García-Ripollés, C., Aguilar, J.M. et al. Modelling breeding habitat preferences of Bonelli’s eagle (Hieraaetus fasciatus) in relation to topography, disturbance, climate and land use at different spatial scales. J Ornithol 147, 97–106 (2006). https://doi.org/10.1007/s10336-005-0019-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-005-0019-3

Keywords

Navigation