Skip to main content

Advertisement

Log in

Motion-compensated data decomposition algorithm to accelerate dynamic cardiac MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

In dynamic cardiac magnetic resonance imaging (MRI), the spatiotemporal resolution is often limited by low imaging speed. Compressed sensing (CS) theory can be applied to improve imaging speed and spatiotemporal resolution. The combination of compressed sensing and low-rank matrix completion represents an attractive means to further increase imaging speed. By extending prior work, a Motion-Compensated Data Decomposition (MCDD) algorithm is proposed to improve the performance of CS for accelerated dynamic cardiac MRI.

Materials and methods

The process of MCDD can be described as follows: first, we decompose the dynamic images into a low-rank (L) and a sparse component (S). The L component includes periodic motion in the background, since it is highly correlated among frames, and the S component corresponds to respiratory motion. A motion-estimation/motion-compensation (ME-MC) algorithm is then applied to the low-rank component to reconstruct a cardiac motion compensated dynamic cardiac MRI.

Results

With validations on the numerical phantom and in vivo cardiac MRI data, we demonstrate the utility of the proposed scheme in significantly improving compressed sensing reconstructions by minimizing motion artifacts. The proposed method achieves higher PSNR and lower MSE and HFEN for medium to high acceleration factors.

Conclusion

The proposed method is observed to yield reconstructions with minimal spatiotemporal blurring and motion artifacts in comparison to the existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. http://cai2r.net/research/ls-reconstruction, https://research.engineering.uiowa.edu/cbig/content/software.

References

  1. Sodickson DK, Griswold MA, Jakob PM, Edelman RR, Manning WJ (1999) Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging. Magn Reson Med 4(1):1009–1022

    Article  Google Scholar 

  2. Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14(3):230–236

    Article  CAS  PubMed  Google Scholar 

  3. Lustig M, Santos JM, Donoho DL, Pauly JM (2006) k-t SPARSE: high frame rate dynamic MRI exploiting spatio-temporal sparsity. In: Proceedings of the 13th annual meeting of international society for magnetic resonance in medicine (ISMRM), USA, p 2420

  4. Jung H, Sung K, Nayak KS, Kim EY, Ye JC (2009) k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61(1):103–116

    Article  PubMed  Google Scholar 

  5. Jung H, Park J, Yoo J, Ye JC (2010) Radial k-t FOCUSS for high-resolution cardiac cine MRI. Magn Reson Med 63:68–78

    PubMed  Google Scholar 

  6. Tsao J, Boesigerp Pruessmann KP (2003) k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 50:1031–1042

    Article  PubMed  Google Scholar 

  7. Usman M, Prieto C, Schaeffter T, Batchelor P (2011) k-t group sparse: a method for accelerating dynamic MRI. Magn Reson Med 66(4):1163–1176

    Article  CAS  PubMed  Google Scholar 

  8. Ravishankar S, Bresler Y (2011) MR image reconstruction from highly undersampled k-space data by dictionarylearning. IEEE Trans Med Imaging 30(5):1028–1041

    Article  PubMed  Google Scholar 

  9. Feng L, Otazo R, Jung H, Jensen JH, Ye JC, Sodickson DK, Kim D (2011) Accelerated cardiac T2 mapping using breath-hold multiecho fast spin-echo pulse sequence with k-t FOCUSS. Magn Reson Med 65(6):1661–1669

    Article  PubMed  PubMed Central  Google Scholar 

  10. Candes E, Recht B (2009) Exact matrix completion via convex optimization. Found Comput Math 9:717–772

    Article  Google Scholar 

  11. Cai JF, Candes E, Shen Z (2010) A singular value thresholding algorithm for matrix completion. SIAM J Optim 20(4):1956–1982

    Article  Google Scholar 

  12. Liang ZP (2007) Spatiotemporal imaging with partially separable functions. In: Proceedings of IEEE international symposium biomedical imaging, pp 988–991

  13. Haldar J, Liang ZP (2010) Spatiotemporal imaging with partially separable functions: a matrix recovery approach. In: Proceedings of IEEE international symposium biomedical imaging, pp 716–719

  14. Lustig M, Elad M, Pauly J (2010) Calibrationless parallel imaging reconstruction by structured low-rank matrix completion. In: Proceedings of the 18th annual meeting of international society for magnetic resonance in medicine (ISMRM), p 2870

  15. Lingala S, Hu Y, Dibella E, Jacob M (2011) Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 30(5):1042–1054

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhao B, Haldar JP, Christodoulou AG, Liang ZP (2012) Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints. IEEE Trans Med Imaging 31(9):1809–1820

    Article  PubMed  PubMed Central  Google Scholar 

  17. Candes E, Li X, Ma Y, Wright J (2011) Robust principal component analysis. J ACM 58(3):1–37

    Article  Google Scholar 

  18. Chandrasekaran V, Sanghavi S, Parrilo P, Willsky A (2011) Rank-sparsity incoherence for matrix decomposition. SIAM J Optim 21(2):572–596

    Article  Google Scholar 

  19. Gao H, Rapacchi S, Wang D, Moriarty J, Meehan C, Sayre J, Laub G, Finn P, Hu P (2012) Compressed sensing using prior rank, intensity and sparsity model (PRISM): applications in cardiac cine MRI. In: Proceedings of the 20th annual meeting of international society for magnetic resonance in medicine (ISMRM), p 2242

  20. Otazo R, Candes E, Sodickson DK (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 73:1125–1136

    Article  PubMed  Google Scholar 

  21. Jung H, Ye JC (2010) Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: what we can learn from video compression techniques. Int J Imaging Syst Technol 20(2):81–98

    Article  Google Scholar 

  22. Asif MS, Hamilton L, Brummer M, Romberg J (2013) Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI. Magn Reson Med 70:800–812

    Article  PubMed  Google Scholar 

  23. Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter T, Batchelor PG, Prieto C (2013) Motion corrected compressed sensing for freebreathing dynamic cardiac MRI. Magn Reson Med 70:504–516

    Article  PubMed  Google Scholar 

  24. Royuela-del-Val J, Cordero-Grande L, Simmross-Wattenberg F, Martín-Fernández M, Alberola-López C (2016) Nonrigid groupwise registration for motion estimation and compensation in compressed sensing reconstruction of breath-hold cardiac cine MRI. Magn Reson Med 75:1525–1536

    Article  PubMed  Google Scholar 

  25. Sharif B, Bresler Y (2007) Physiologically improved NCAT phantom (PINCAT) enables in silico study of the effects of beat-to-beat variability on cardiac MR. In: Proceedings of international society for magnetic resonance in medicine (ISMRM), p 3418

  26. Lingala SG, DiBella E, Jacob M (2015) Deformation corrected compressed sensing (DC-CS): a novel framework for accelerated dynamic MRI. IEEE Trans Med Imaging 34(1):72–85

    Article  PubMed  Google Scholar 

  27. Lingala S, Jacob M (2013) Blind compressive sensing dynamic MRI. IEEE Trans Med Imaging 32(6):1132–1145

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dowling J, Bourgeat P, Raffelt D, Fripp J, Greer PB, Patterson J, Denham J, Gupta S, Tang C, Stanwell P, Ourselin S, Salvado O (2009) Non-rigid correction of interleaving artefacts in pelvic MRI. In: Proceedings of SPIE medical imaging 2009: image processing, vol 7259

Download references

Acknowledgements

The authors would like to thank Dr. Jong Ye for making the dynamic cardiac data available online: (http://bisp.kaist.ac.kr/ktFOCUSS.htm). This research has been supported by NSERC Discovery Grant RGPIN/239007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Alirezaie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

In this study, we used dynamic cardiac data available online (http://bisp.kaist.ac.kr/ktFOCUSS.htm). The Institutional Review Board of the University of Southern California approved the imaging protocols. Each subject was screened for magnetic resonance imaging risk factors and provided informed consent in accordance with institutional policy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tolouee, A., Alirezaie, J. & Babyn, P. Motion-compensated data decomposition algorithm to accelerate dynamic cardiac MRI. Magn Reson Mater Phy 31, 33–47 (2018). https://doi.org/10.1007/s10334-017-0628-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-017-0628-x

Keywords

Navigation