Skip to main content
Log in

A comparative study of the sensitivity of diffusion-related parameters obtained from diffusion tensor imaging, diffusional kurtosis imaging, q-space analysis and bi-exponential modelling in the early disease course (24 h) of hyperacute (6 h) ischemic stroke patients

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

To compare the sensitivity and early temporal changes of diffusion parameters obtained from diffusion tensor imaging (DTI), diffusional kurtosis imaging (DKI), q-space analysis (QSA) and bi-exponential modelling in hyperacute stroke patients.

Materials and methods

A single investigational acquisition allowing the four diffusion analyses was performed on seven hyperacute stroke patients with a 3T system. The percentage change between ipsi- and contralateral regions were compared at admission and 24 h later. Two out of the seven patients were imaged every 6 h during this period.

Results

Kurtoses from both DKI and QSA were the most sensitive of the tested diffusion parameters in the few hours following ischemia. An early increase–maximum–decrease pattern of evolution was highlighted during the 24-h period for all parameters proportional to diffusion coefficients. A similar pattern was observed for both kurtoses in only one of two patients.

Conclusion

Our comparison was performed using identical diffusion encoding timings and on patients in the same stage of their condition. Although preliminary, our findings confirm those of previous studies that showed enhanced sensitivity of kurtosis. A fine time mapping of diffusion metrics in hyperacute stroke patients was presented which advocates for further investigations on larger animal or human cohorts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jones D (2011) Diffusion MRI: theory, methods and applications. Oxford University Press, New York

    Google Scholar 

  2. Le Bihan D (2011) Magnetic resonance diffusion imaging: introduction and concepts. In: Jones D (ed) Diffusion MRI: theory, methods and applications. Oxford University Press, New York, pp 57–78

    Google Scholar 

  3. Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, Asgari H, Norman D (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol 11(3):423–429

    CAS  PubMed  Google Scholar 

  4. Wu O, Nentwich L, Chutinet A (2011) Diffusion in acute stroke. In: Jones D (ed) Diffusion MRI: theory, methods and applications. Oxford University Press, New York, pp 518–528

    Google Scholar 

  5. Basser PJ, Özarslan E (2011) Anisotropic diffusion: from the apparent diffusion coefficient to the apparent diffusion tensor. In: Jones D (ed) Diffusion MRI: theory, methods and applications. Oxford University Press, New York, pp 79–91

    Google Scholar 

  6. Callaghan P (1991) Principles of nuclear magnetic resonance microscopy. Oxford University Press, New York

    Google Scholar 

  7. Callaghan P (2011) Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR. Oxford University Press, New York

    Book  Google Scholar 

  8. Jensen J, Helpern J, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432–1440

    Article  PubMed  Google Scholar 

  9. Kiselev V (2011) The cumulant expansion: an overarching mathematical framework for understanding diffusion NMR. In: Jones D (ed) Diffusion MRI: theory, methods and applications. Oxford University Press, New York, pp 152–168

    Google Scholar 

  10. Westin CF, Knutsson H, Pasternak O, Szczepankiewicz F, Ozarslan E, Van Westen D, Mattisson C, Bogren M, O’Donnell LJ, Kubicki M, Topgaard D, Nilsson M (2016) Q-space trajectory imaging for multidimensional diffusion MRI of the human brain. Neuroimage 135:345–362

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23(7):698–710

    Article  PubMed  PubMed Central  Google Scholar 

  12. Niendorf T, Dijkhuizen R, Norris D, Van Lookeren Campagne M, Nicolay K (1996) Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion weighted imaging. Magn Reson Med 36(6):847–857

    Article  CAS  PubMed  Google Scholar 

  13. Kiselev VG, Il’yasov KA (2007) Is the “biexponential diffusion” biexponential? Magn Reson Med 57(3):464–469

    Article  PubMed  Google Scholar 

  14. Welch KMA, Windham J, Knight RA, Nagesh V, Hugg JW, Jacobs M, Peck D, Booker P, Dereski MO, Levine SR (1995) A model to predict the histopathology of human stroke using diffusion and T2-weighted magnetic resonance imaging. Stroke 26(11):1983–1989

    Article  CAS  PubMed  Google Scholar 

  15. Jensen J, Falangola M, Hu C, Tabesh A, Rapalino O, Lo C, Helpern J (2011) Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction. NMR Biomed 24(5):452–457

    Article  PubMed  Google Scholar 

  16. Hui ES, Fieremans E, Jensen JH, Tabesh A, Feng W, Bonilha L, Spampinato MV, Adams R, Helpern JA (2012) Stroke assessment with diffusional kurtosis imaging. Stroke 43(11):2968–2973

    Article  PubMed  PubMed Central  Google Scholar 

  17. Grinberg F, Ciobanu L, Farrher E, Shah NJ (2012) Diffusion kurtosis imaging and log-normal distribution function imaging enhance the visualisation of lesions in animal stroke models. NMR Biomed 25(11):1295–1304

    Article  PubMed  Google Scholar 

  18. Cheung JS, Wang E, Lo EH, Sun PZ (2012) Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia. Stroke 43(8):2252–2254

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu Y, Kim J, Chan ST, Zhou IY, Guo Y, Igarashi T, Zheng H, Guo G, Sun PZ (2016) Comparison of image sensitivity between conventional tensor-based and fast diffusion kurtosis imaging protocols in a rodent model of acute ischemic stroke. NMR Biomed 29(5):625–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weber RA, Hui ES, Jensen JH, Nie X, Falangola MF, Helpern JA, Adkins DL (2015) Diffusional kurtosis and diffusion tensor imaging reveal different time-sensitive stroke-induced microstructural changes. Stroke 46(2):545–550

    Article  PubMed  PubMed Central  Google Scholar 

  21. Umesh Rudrapatna S, Wieloch T, Beirup K, Ruscher K, Mol W, Yanev P, Leemans A, Van der Toorn A, Dijkhuizen RM (2014) Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology. Neuroimage 97:363–373

    Article  CAS  PubMed  Google Scholar 

  22. Hui ES, Du F, Huang S, Shen Q, Duong TQ (2012) Spatiotemporal dynamics of diffusional kurtosis, mean diffusivity and perfusion changes in experimental stroke. Brain Res 1451:100–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Taoka T, Fujioka M, Kashiwagi Y, Obata A, Rokugawa T, Hori M, Masutani Y, Aoki S, Naganawa S, Abe K (2016) Time course of diffusion kurtosis in cerebral infarctions of transient middle cerebral artery occlusion rat model. J Stroke Cerebrovasc Dis 25(3):610–617

    Article  PubMed  Google Scholar 

  24. Zhang S, Yao Y, Shi J, Tang X, Zhao L, Zhu W (2016) The temporal evolution of diffusional kurtosis imaging in an experimental middle cerebral artery occlusion (MCAO) model. Magn Reson Imaging 34(7):889–895

    Article  PubMed  Google Scholar 

  25. Taoka T, Fujioka M, Sakamoto M, Miyasaka T, Akashi T, Ochi T, Hori S, Uchikoshi M, Xu J, Kichikawa K (2014) Time course of axial and radial diffusion kurtosis of white matter infarctions: period of pseudonormalization. AJNR Am J Neuroradiol 35(8):1509–1514

    Article  CAS  PubMed  Google Scholar 

  26. Hori M, Motosugi U, Fatima Z, Kumagai H, Ikenaga S, Ishigame K, Aoki S, Onodera T, Yagi K, Araki T (2011) A comparison of mean displacement values using high b value q-space diffusion-weighted MRI with conventional apparent diffusion coefficient in patients with stroke. Acad Radiol 18(7):837–841

    Article  PubMed  Google Scholar 

  27. Brugières P, Thomas P, Maraval A, Hosseini H, Combes C, Chafiq A, Ruel L, Breil S, Peschanski M, Gaston A (2004) Water diffusion compartmentation at high b values in ischemic brain. Am J Neuroradiol 25(5):692–698

    PubMed  Google Scholar 

  28. Grinberg F, Farrher E, Ciobanu L, Geffroy F, Le Bihan D, Shah NJ (2014) Non-Gaussian diffusion imaging for enhanced contrast of brain tissue affected by ischemic stroke. PLoS One 9(2):e89225. doi:10.1371/journal.pone.0089225

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schwarcz A, Bogner P, Meric P, Correze J-L, Berente Z, Pál J, Gallyas F, Doczi T, Gillet B, Beloeil J-C (2004) The existence of biexponential signal decay in magnetic resonance diffusion-weighted imaging appears to be independent of compartmentalization. Magn Reson Med 51(2):278–285

    Article  PubMed  Google Scholar 

  30. Latt J, Nilsson M, van Westen D, Wirestam R, Stahlberg F, Brockstedt S (2009) Diffusion-weighted MRI measurements on stroke patients reveal water-exchange mechanisms in sub-acute ischaemic lesions. NMR Biomed 22(6):619–628

    Article  CAS  PubMed  Google Scholar 

  31. Baron CA, Kate M, Gioia L, Butcher K, Emery D, Budde M, Beaulieu C (2015) Reduction of diffusion-weighted imaging contrast of acute ischemic stroke at short diffusion times. Stroke 46(8):2136–2141

    Article  PubMed  Google Scholar 

  32. Mitra PP, Halperin BI (1995) Effects of finite gradient-pulse widths in pulsed-field-gradient diffusion measurements. J Magn Reson Ser A 113(1):94–101

    Article  CAS  Google Scholar 

  33. Mitra P, Latour L, Kleinber R, Sotak C (1995) Pulsed field gradient measurements of restricted diffusion and the return-to-origin probability. J Magn Reson A 114(1):47–58

    Article  CAS  Google Scholar 

  34. Assaf Y, Ben-Bashat D, Chapman J, Peled S, Biton IE, Kafri M, Segev Y, Hendler T, Korczyn AD, Graif M, Cohen Y (2002) High b value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magn Reson Med 47(1):115–126

    Article  CAS  PubMed  Google Scholar 

  35. Lätt J, Nilsson M, Wirestam R, Johansson E, Larsson E-M, Stȧhlberg F, Brockstedt S (2008) In vivo visualization of displacement-distribution-derived parameters in q-space imaging. Magn Reson Imaging 26(1):77–87

    Article  PubMed  Google Scholar 

  36. Gudbjartsson H, Patz S (1995) The rician distribution of noisy MRI data. J Sci Comput 34(6):910–914

    CAS  Google Scholar 

  37. Veraart J, Sijbers J, Sunaert S, Leemans A, Jeurissen B (2013) Weighted linear least squares estimation of diffusion MRI parameters: strengths, limitations, and pitfalls. Neuroimage 81:335–346

    Article  PubMed  Google Scholar 

  38. Osborne M, Smyth G (1995) A modified Prony algorithm for exponential function fitting. J Sci Comput 16(1):119–138

    Google Scholar 

  39. Peeters F, Rommel D, Abarca-Quinones J, Grégoire V, Duprez T (2012) Early (72-h) detection of radiotherapy-induced changes in an experimental tumor model using diffusion-weighted imaging, diffusion tensor imaging, and Q-space imaging parameters: a comparative study. J Magn Reson Imaging 35(2):409–417

    Article  PubMed  Google Scholar 

  40. Sun PZ, Wang Y, Mandeville E, Chan S-T, Lo EH, Ji X (2014) Validation of fast diffusion kurtosis MRI for imaging acute ischemia in a rodent model of stroke. NMR Biomed 27(11):1413–1418

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fukunaga I, Hori M, Masutani Y, Hamasaki N, Sato S, Suzuki Y, Kumagai F, Kosuge M, Hoshito H, Kamagata K, Shimoji K, Nakanishi A, Aoki S, Senoo A (2013) Effects of diffusional kurtosis imaging parameters on diffusion quantification. Radiol Phys Technol 6(2):343–348

    Article  PubMed  PubMed Central  Google Scholar 

  42. Le Bihan D (2007) The ‘wet mind’: water and functional neuroimaging. Phys Med Biol 52(7):R57

    Article  PubMed  Google Scholar 

  43. Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15(6):1044–1045

    Article  Google Scholar 

  44. Beauchamp N, Ulug A, Passe T, Van Zijl PCM (1998) MR diffusion imaging in stroke: review and controversies. Imag Thera Techno 18(5):1269–1283

    Google Scholar 

  45. Glenn GR, Helpern JA, Tabesh A, Jensen JH (2015) Quantitative assessment of diffusional kurtosis anisotropy. NMR Biomed 28(4):448–459

    Article  PubMed  PubMed Central  Google Scholar 

  46. Budde MD, Frank JA (2010) Neurite beading is sufficient to decrease the apparent diffusion coefficient after ischemic stroke. Proc Natl Acad Sci USA 107(32):14472–14477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Novikov DS, Jensen JH, Helpern JA, Fieremans E (2014) Revealing mesoscopic structural universality with diffusion. Proc Natl Acad Sci USA 111(14):5088–5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. An H, Ford AL, Vo K, Powers WJ, Lee J-M, Lin W (2011) Signal evolution and infarction risk for ADC lesions in acute ischemic stroke are both time and perfusion dependent. Stroke 42(5):1276–1281

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nilsson M, Szczepankiewicz F, van Westen D, Hansson O (2015) Extrapolation-based references improve motion and eddy-current correction of high b value DWI data: application in Parkinson’s disease Dementia. PLoS One 10(11):e0141825. doi:10.1371/journal.pone.0141825

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ben-Amitay S, Jones DK, Assaf Y (2012) Motion correction and registration of high b value diffusion weighted images. Magn Reson Med 67(6):1694–1702

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Grant Support

This work was funded by the Fond National de la Recherche Scientifique of Belgium (FNRS-FWO). Grants number: FNRS 3.4.625.06.F

Authors’ contribution

Gaëtan Duchêne: data analysis, Frank Peeters: protocol development and data analysis, André Peeters: data collection, Thierry Duprez: data collection and project development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaëtan Duchêne.

Ethics declarations

Conflict of interest

All the authors involved in the present study declare that they have no conflicts of interest.

Research involving human participants

All procedures performed in the present study involving human participants were in accordance with the ethical standards of our institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants—or their legal decision-maker substitutes—included in the present study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duchêne, G., Peeters, F., Peeters, A. et al. A comparative study of the sensitivity of diffusion-related parameters obtained from diffusion tensor imaging, diffusional kurtosis imaging, q-space analysis and bi-exponential modelling in the early disease course (24 h) of hyperacute (6 h) ischemic stroke patients. Magn Reson Mater Phy 30, 375–385 (2017). https://doi.org/10.1007/s10334-017-0612-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-017-0612-5

Keywords

Navigation