Skip to main content

Advertisement

Log in

Automatic labeling of cerebral arteries in magnetic resonance angiography

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

In order to introduce 4D flow magnetic resonance imaging (MRI) as a standard clinical instrument for studying the cerebrovascular system, new and faster postprocessing tools are necessary. The objective of this study was to construct and evaluate a method for automatic identification of individual cerebral arteries in a 4D flow MRI angiogram.

Materials and methods

Forty-six elderly individuals were investigated with 4D flow MRI. Fourteen main cerebral arteries were manually labeled and used to create a probabilistic atlas. An automatic atlas-based artery identification method (AAIM) was developed based on vascular-branch extraction and the atlas was used for identification. The method was evaluated by comparing automatic with manual identification in 4D flow MRI angiograms from 67 additional elderly individuals.

Results

Overall accuracy was 93 %, and internal carotid artery and middle cerebral artery labeling was 100 % accurate. Smaller and more distal arteries had lower accuracy; for posterior communicating arteries and vertebral arteries, accuracy was 70 and 89 %, respectively.

Conclusion

The AAIM enabled fast and fully automatic labeling of the main cerebral arteries. AAIM functionality provides the basis for creating an automatic and powerful method to analyze arterial cerebral blood flow in clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAIM:

Automatic atlas-based artery identification method

CoW:

Circle of Willis

ICA:

Internal carotid artery

MCA:

Middle cerebral artery

ACA:

Anterior cerebral artery

VA:

Vertebral artery

BA:

Basilar artery

PCA:

Posterior cerebral artery

PCoA:

Posterior communicating artery

References

  1. Gu T, Korosec FR, Block WF, Fain SB, Turk Q, Lum D, Zhou Y, Grist TM, Haughton V, Mistretta CA (2005) PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. Am J Neuroradiol 26:743–749

    PubMed  Google Scholar 

  2. Markl M, Frydrychowicz A, Kozerke S, Hope M, Wieben O (2012) 4D flow MRI. J Magn Reson Imaging 36:1015–1036

    Article  PubMed  Google Scholar 

  3. Hope MD, Purcell DD, Hope TA, Von Morze C, Vigneron DB, Alley MT, Dillon WP (2009) Complete intracranial arterial and venous blood flow evaluation with 4D flow MR imaging. Am J Neuroradiol 30:362–366

    Article  CAS  PubMed  Google Scholar 

  4. Turski P, Edjlali M, Oppenheim C (2013) Fast 4D flow MRI re-emerges as a potential clinical tool for neuroradiology. Am J Neuroradiol 34:1929–1930

    Article  CAS  PubMed  Google Scholar 

  5. Bogunovic H, Pozo JM, Cárdenes R, San Román L, Frangi AF (2013) Anatomical labeling of the circle of Willis using maximum a posteriori probability estimation. IEEE Trans Med Imaging 32:1587–1599

    Article  PubMed  Google Scholar 

  6. Uchiyama Y, Yamauchi M, Ando H, Yokoyama R, Hara T, Fujita H, Iwama T, Hoshi H (2006) Automated classification of cerebral arteries in MRA images and its application to maximum intensity projection. Conf Proc IEEE Eng Med Biol Soc 1:4865–4868

    PubMed  Google Scholar 

  7. Bilgel M, Roy S, Carass A, Nyquist PA, Prince JL (2013) Automated anatomical labeling of the cerebral arteries using belief propagation. Proc SPIE Int Soc Opt Eng 866918:1–6

    Google Scholar 

  8. Schrauben E, Wåhlin A, Ambarki K, Spaak E, Malm J, Wieben O, Eklund A (2015) Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries. J Magn Reson Imaging. doi:10.1002/jmri.24900

    Google Scholar 

  9. Romero JR, Pikula A, Nguyen TN, Nien YL, Norbash A, Babikian VL (2009) Cerebral collateral circulation in carotid artery disease. Curr Cardiol Rev 5:279–288

    Article  PubMed Central  PubMed  Google Scholar 

  10. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM (2012) Fsl. Neuroimage 62:782–790

    Article  PubMed  Google Scholar 

  11. Fischl B (2012) FreeSurfer. Neuroimage 62:774–781

    Article  PubMed Central  PubMed  Google Scholar 

  12. Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46:39–46

    Article  PubMed  Google Scholar 

  13. Murino L, Granata D, Carfora MF, Selvan SE, Alfano B, Amato U, Larobina M (2014) Evaluation of supervised methods for the classification of major tissues and subcortical structures in multispectral brain magnetic resonance images. Comput Med Imaging Graph 38:337–347

    Article  PubMed  Google Scholar 

  14. Passat N, Ronse C, Baruthio J, Armspach J-P, Maillot C, Jahn C (2005) Region-growing segmentation of brain vessels: an atlas-based automatic approach. J Magn Reson Imaging 21:715–725

    Article  PubMed  Google Scholar 

  15. Taso M, Le Troter A, Sdika M, Ranjeva JP, Guye M, Bernard M, Callot V (2014) Construction of an in vivo human spinal cord atlas based on high-resolution MR images at cervical and thoracic levels: preliminary results. Magn Reson Mater Phy 27:257–267

    Article  CAS  Google Scholar 

  16. Wagenknecht G, Kaiser HJ, Mottaghy FM, Herzog H (2013) MRI for attenuation correction in PET: methods and challenges. Magn Reson Mater Phy 26:99–113

    Article  Google Scholar 

  17. Nevalainen N, Riklund K, Andersson M, Axelsson J, Ogren M, Lövdén M, Lindenberger U, Bäckman L, Nyberg L (2014) COBRA: a prospective multimodal imaging study of dopamine, brain structure and function, and cognition. Brain Res 1612:83–103

    Article  PubMed  Google Scholar 

  18. Johnson KM, Markl M (2010) Improved SNR in phase contrast velocimetry with five-point balanced flow encoding. Magn Reson Med 63:349–355

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wåhlin A, Ambarki K, Birgander R, Wieben O, Johnson KM, Malm J, Eklund A (2013) Measuring pulsatile flow in cerebral arteries using 4D phase-contrast MR imaging. Am J Neuroradiol 34:1740–1745

    Article  PubMed  Google Scholar 

  20. Bernstein MA, King KE, Zhou XJ, Fong W (2005) Handbook of MRI pulse sequences. Academic Press, Burlington, Vermont

    Google Scholar 

  21. Palàgyi K, Kuba A (1998) A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognit Lett 19:613–627

    Article  Google Scholar 

  22. Chen Z, Molloi S (2003) Automatic 3D vascular tree construction in CT angiography. Comput Med Imaging Graph 27:469–479

    Article  PubMed  Google Scholar 

  23. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  PubMed  Google Scholar 

  24. Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. Neuroimage 62:911–922

    Article  PubMed  Google Scholar 

  25. Devault K, Gremaud PA, Novak V, Olufsen MS, Vernières G, Zhao P (2008) Blood flow in the circle of Willis: modeling and calibration. Multiscale Model Simul 7:888–909

    Article  PubMed Central  PubMed  Google Scholar 

  26. Gaha M, Roy C, Estrade L, Gevry G, Weill A, Roy D, Chagnon M, Raymond J (2014) Inter- and intraobserver agreement in scoring angiographic results of intra-arterial stroke therapy. Am J Neuroradiol 35:1163–1169

    Article  CAS  PubMed  Google Scholar 

  27. Butler T, Zaborszky L, Pirraglia E, Li J, Wang XH, Li Y, Tsui W, Talos D, Devinsky O, Kuchna I, Nowicki K, French J, Kuzniecky R, Wegiel J, Glodzik L, Rusinek H, deLeon MJ, Thesen T (2014) Comparison of human septal nuclei MRI measurements using automated segmentation and a new manual protocol based on histology. Neuroimage 97:245–251

    Article  PubMed Central  PubMed  Google Scholar 

  28. Koerte I, Haberl C, Schmidt M, Pomschar A, Lee S, Rapp P, Steffinger D, Tain R-W, Alperin N, Ertl-Wagner B (2013) Inter- and intra-rater reliability of blood and CSF flow quantification by phase-contrast MRI. J Magn Reson Imaging 38:655–662

    Article  PubMed Central  PubMed  Google Scholar 

  29. Nowinski WL, Chua BC, Marchenko Y, Puspitsari F, Volkau I, Knopp MV (2011) Three-dimensional reference and stereotactic atlas of human cerebrovasculature from 7 Tesla. Neuroimage 55:986–998

    Article  CAS  PubMed  Google Scholar 

  30. Mut F, Wright S, Ascoli GA, Cebral JR (2014) Morphometric, geographic, and territorial characterization of brain arterial trees. Int J Numer Method Biomed Eng 30:755–766

    Article  PubMed Central  PubMed  Google Scholar 

  31. Huang S, Baimouratov R, Volkau I, Nowinski WL (2006) IVME: a tool for editing, manipulation, quantification, and labeling of cerebrovascular models. Comput Med Imaging Graph 30:187–195

    Article  PubMed  Google Scholar 

  32. Zarrinkoob L, Ambarki K, Wåhlin A, Birgander R, Eklund A, Malm J (2015) Blood flow distribution in cerebral arteries. J Cereb Blood Flow Metab 35:648–654

    Article  PubMed  Google Scholar 

  33. Zhao M, Amin-Hanjani S, Ruland S, Curcio AP, Ostergren L, Charbel FT (2007) Regional cerebral blood flow using quantitative MR angiography. Am J Neuroradiol 28:1470–1473

    Article  CAS  PubMed  Google Scholar 

  34. Bammer R, Hope TA, Aksoy M, Alley MT (2007) Time-resolved 3D quantitative flow MRI of the major intracranial vessels: initial experience and comparative evaluation at 1.5 T and 3.0 T in combination with parallel imaging. Magn Reson Med 57:127–140

    Article  PubMed Central  PubMed  Google Scholar 

  35. Amin-Hanjani S, Du X, Pandey DK, Thulborn KR, Charbel FT (2014) Effect of age and vascular anatomy on blood flow in major cerebral vessels. J Cereb Blood Flow Metab 35:312–318

    Article  PubMed Central  PubMed  Google Scholar 

  36. Mueller SG, Weiner MW, Thal LJ, Petersen RC, Jack CR, Jagust W, Trojanowski JQ, Toga AW, Beckett L (2005) Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI). Alzheimers Dement 1:55–66

    Article  PubMed Central  PubMed  Google Scholar 

  37. Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, Whitwell JL, Ward C, Dale AM, Felmlee JP, Gunter JL, Hill DLG, Killiany R, Schuff N, Fox-Bosetti S, Lin C, Studholme C, DeCarli CS, Krueger G, Ward HA, Metzger GJ, Scott KT, Mallozzi R, Blezek D, Levy J, Debbins JP, Fleisher AS, Albert M, Green R, Bartzokis G, Glover G, Mugler J, Weiner MW (2008) The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685–691

    Article  PubMed Central  PubMed  Google Scholar 

  38. Toga AW, Clark KA, Thompson PM, Shattuck DW, Van Horn JD (2012) Mapping the human connectome. Neurosurgery 71:1–5

    Article  PubMed Central  PubMed  Google Scholar 

  39. Amunts K, Lindner A, Zilles K (2014) The human brain project: neuroscience perspectives and German contributions. e-Neuroforum 5:43–50

    Article  Google Scholar 

  40. Mohammadi D (2015) ENIGMA: crowdsourcing meets neuroscience. Lancet Neurol 14:462–463

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Swedish Research Council Grant 621-2011-5216, the Swedish Heart and Lung Foundation Grants 20110383 and 20140592 and the Swedish Brain Foundation. A grant from the Swedish Research Council (421-2012-648) to Lars Nyberg supported the COBRA data collection. The atlas will be made publicly available at an Umeå University website at time of publication.

Authors’ contribution

Dunås: Protocol/project development, Data collection or management, Data analysis. Wåhlin: Protocol/project development, Data collection or management, Data analysis. Ambarki: Protocol/project development, Data analysis. Zarrinkoob: Data analysis. Birgander: Data analysis. Malm: Protocol/project development, Data analysis. Eklund: Protocol/project development, Data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tora Dunås.

Ethics declarations

Conflict of interest

The authors each declare that they have no conflict of interest.

Ethical standards

The local ethical review board approved the COBRA study. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunås, T., Wåhlin, A., Ambarki, K. et al. Automatic labeling of cerebral arteries in magnetic resonance angiography. Magn Reson Mater Phy 29, 39–47 (2016). https://doi.org/10.1007/s10334-015-0512-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-015-0512-5

Keywords

Navigation