Skip to main content
Log in

The separation of Gln and Glu in STEAM: a comparison study using short and long TEs/TMs at 3 and 7 T

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

This study aimed to determine the optimal echo time (TE) and mixing time (TM) for in vivo glutamine (Gln) and glutamate (Glu) separation in stimulated-echo acquisition mode at 3 and 7 T. We applied a short TE/TM (20/10 ms) for a high signal-to-noise-ratio and a field-specific long TE/TM (3 T: 72/6 ms; 7 T: 74/68 ms) for optimal Gln and Glu separation of the Carbon-4 proton resonances.

Materials and methods

Corresponding Gln and Glu spectra were simulated using VeSPA software, and measured in a phantom and human brains at 3 and 7 T.

Results

Higher spectral separation for Gln and Glu was achieved at 7 than 3 T. At 7 T, short TE/TM provided comparable spectral separation and in vitro Gln and Glu quantification compared to long TE/TM. Moreover, it showed greater reliability in in vivo Gln and Glu detection and separation than long TE/TM, with significantly lower Cramer–Rao lower bounds (Gln: 14.9 vs. 75.8; Glu: 3.8 vs. 6.5) and correlation between Gln and Glu (p = 0.004).

Conclusion

Based on the optimal separation for Gln and Glu, a short TE/TM at 7 T is proposed for future in vivo Gln and Glu acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Albrecht J, Sidoryk-Węgrzynowicz M, Zielińska M, Aschner M (2010) Roles of glutamine in neurotransmission. Neuron Glia Biol 6:263–276

    Article  PubMed  Google Scholar 

  2. Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026S–1031S

    CAS  PubMed  Google Scholar 

  3. Taylor-Robinson SD, Weeks RA, Bryant DJ, Sargentoni J, Marcus CD, Harding AE, Brooks DJ (1996) Proton magnetic resonance spectroscopy in Huntington’s disease: evidence in favour of the glutamate excitotoxic theory. Mov Disord 11:167–173

    Article  CAS  PubMed  Google Scholar 

  4. Horn DI, Yu C, Steiner J, Buchmann J, Kaufmann J, Osoba A, Eckert U, Zierhut KC, Schiltz K, He H, Biswal B, Bogerts B, Walter M (2010) Glutamatergic and resting-state functional connectivity correlates of severity in major depression—the role of pregenual anterior cingulate cortex and anterior insula. Front Syst Neurosci 4:33

    PubMed Central  PubMed  Google Scholar 

  5. Brennan BP, Hudson JI, Jensen JE, McCarthy J, Roberts JL, Prescot AP, Cohen BM, Pope HG, Renshaw PF, Ongür D (2010) Rapid enhancement of glutamatergic neurotransmission in bipolar depression following treatment with riluzole. Neuropsychopharmacology 35:834–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite concentrations in patients with probable Alzheimer disease. Magn Reson Med 32:110–115

    Article  CAS  PubMed  Google Scholar 

  7. Yang S, Hu J, Kou Z, Yang Y (2008) Spectral simplification for resolved glutamate and glutamine measurement using a standard STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7, and 9.4 T. Magn Reson Med 59:236–244

    Article  CAS  PubMed  Google Scholar 

  8. Kaiser LG, Schuff N, Cashdollar N, Weiner MW (2005) Age-related glutamate and glutamine concentration changes in normal human brain: 1H MR spectroscopy study at 4 T. Neurobiol Aging 26:665–672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Lee HK, Yaman A, Nalcioglu O (1995) Homonuclear J-refocused spectral editing technique for quantification of glutamine and glutamate by 1H NMR spectroscopy. Magn Reson Med 34:253–259

    Article  CAS  PubMed  Google Scholar 

  10. Thompson RB, Allen PS (1998) A new multiple quantum filter design procedure for use on strongly coupled spin systems found in vivo: its application to glutamate. Magn Reson Med 39:762–771

    Article  CAS  PubMed  Google Scholar 

  11. Choi C, Coupland NJ, Bhardwaj PP, Malykhin N, Gheorghiu D, Allen PS (2006) Measurement of brain glutamate and glutamine by spectrally-selective refocusing at 3 tesla. Magn Reson Med 55:997–1005

    Article  CAS  PubMed  Google Scholar 

  12. Schulte RF, Trabesinger AH, Boesiger P (2005) Chemical-shift-selective filter for the in vivo detection of J-coupled metabolites at 3 T. Magn Reson Med 53:275–281

    Article  CAS  PubMed  Google Scholar 

  13. Ryner LN, Sorenson JA, Thomas MA (1995) Localized 2D J-resolved 1H MR spectroscopy: strong coupling effects in vitro and in vivo. Magn Reson Imaging 13:853–869

    Article  CAS  PubMed  Google Scholar 

  14. Thomas MA, Ryner LN, Mehta MP, Turski PA, Sorenson JA (1996) Localized 2D J-resolved 1H MR spectroscopy of human brain tumors in vivo. J Magn Reson Imaging 6:453–459

    Article  CAS  PubMed  Google Scholar 

  15. Mayer D, Spielman DM (2005) Detection of glutamate in the human brain at 3 T using optimized constant time point resolved spectroscopy. Magn Reson Med 54:439–442

    Article  CAS  PubMed  Google Scholar 

  16. Bartha R, Drost D, Menon R, Williamson P (2000) Comparison of the quantification precision of human short echo time 1H spectroscopy at 1.5 and 4.0 tesla. Magn Reson Med 44:185–192

    Article  CAS  PubMed  Google Scholar 

  17. Tkác I, Andersen P, Adriany G, Merkle H, Ugurbil K, Gruetter R (2001) In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46:451–456

    Article  PubMed  Google Scholar 

  18. Stephenson MC, Gunner F, Napolitano A, Greenhaff PL, Macdonald IA, Saeed N, Vennart W, Francis ST, Morris PG (2011) Applications of multi-nuclear magnetic resonance spectroscopy at 7 T. World J Radiol 3:105–113

    Article  PubMed Central  PubMed  Google Scholar 

  19. Smith SA, Levante TO, Meier BH, Ernst RR (1994) Computer simulations in magnetic resonance. An object-oriented programming approach. J Magn Reson A 106:75–105

    Article  CAS  Google Scholar 

  20. Soher B, Semanchuk P, Young K, Todd D (2014) VeSPA—simulation user manual and reference. http://scion.duhs.duke.edu/vespa/simulation. Accessed 17 July 2014

  21. Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 13:129–153

    Article  CAS  PubMed  Google Scholar 

  22. Thompson RB, Allen PS (2001) Response of metabolites with coupled spins to the STEAM sequence. Magn Reson Med 45:955–965

    Article  CAS  PubMed  Google Scholar 

  23. Dou W, Palomero-Gallagher N, van Tol MJ, Kaufmann J, Zhong K, Bernstein HG, Heinze HJ, Speck O, Walter M (2013) Systematic regional variations of GABA, glutamine and glutamate concentrations follow receptor fingerprints of human cingulate cortex. J Neurosci 33:12698–12704

    Article  CAS  PubMed  Google Scholar 

  24. Elywa M, Mulla-Osman S, Godenschweger F, Speck O (2012) Proton magnetic resonance spectroscopy in deep human brain structures at 7 T. J Appl Spectrosc 79:120–125

    Article  CAS  Google Scholar 

  25. Hargreaves BA, Cunningham CH, Nishimura DG, Conolly SM (2004) Variable-rate selective excitation for rapid MRI sequences. Magn Reson Med 52:590–597

    Article  PubMed  Google Scholar 

  26. Mandal PK (2007) Magnetic resonance spectroscopy (MRS) and its application in Alzheimer’s disease. Concepts Magn Reson 30:40–64

    Article  Google Scholar 

  27. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30:672–679

    Article  CAS  PubMed  Google Scholar 

  28. Provencher SW (2014) LCModel and LCMgui user’s manual. http://s-provencher.com/pages/lcm-manual.shtml

  29. Tkác I, Öz G, Adriany G, Ugurbil K, Gruetter R (2009) In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: metabolite quantification at 4 T versus 7 T. Magn Reson Med 62(4):868–879

    Article  PubMed Central  PubMed  Google Scholar 

  30. Li Y, Xu D, Chen AP, Vigneron DB, Nelson SJ (2008) Proton spectroscopy of human brain at 3 T and 7 T: signal-to-noise ratio, spectral linewidth and relaxation times. In: Proceedings of the 16th scientific meeting, International Society for Magnetic Resonance in medicine, Toronto, p 1592

  31. Hurd R, Sailasuta N, Srinivasan R, Vigneron DB, Pelletier D, Nelson SJ (2004) Measurement of brain glutamate using TE-averaged PRESS at 3 T. Magn Reson Med 51:435–440

    Article  CAS  PubMed  Google Scholar 

  32. Wijtenburg S, Rowland L, Edden R, Barker P, Phil D (2013) Reproducibility of brain spectroscopy at 7 T using conventional localization and spectral editing techniques. J Magn Reson Imaging 38(2):460–467

    Article  PubMed Central  PubMed  Google Scholar 

  33. Seeger U, Klose U, Mader I, Grodd W, Nagele T (2003) Parameterized evaluation of macromolecules and lipids in proton MR spectroscopy of brain diseases. Magn Reson Med 49:19–28

    Article  CAS  PubMed  Google Scholar 

  34. Schaller B, Xin L, Cudalbu C, Gruetter R (2013) Quantification of the neurochemical profile using simulated macromolecule resonances at 3 T. NMR Biomed 26(5):593–599

    Article  PubMed  Google Scholar 

  35. Schaller B, Xin L, Gruetter R (2014) Is the macromolecule signal tissue-specific in healthy human brain? A 1H MRS study at 7 tesla in the occipital lobe. Magn Reson Med 72:934–940

    Article  CAS  PubMed  Google Scholar 

  36. Clementi V, Tonon C, Lodi R, Malucelli E, Barbiroli B, Iotti S (2005) Assessment of glutamate and glutamine contribution to in vivo N-acetylaspartate quantification in human brain by (1)H-magnetic resonance spectroscopy. Magn Reson Med 54:1333–1339

    Article  CAS  PubMed  Google Scholar 

  37. Kakeda S, Korogi Y, Moriya J, Ohnari N, Sato T, Ueno S, Yanagihara N, Harada M, Matsuda T (2011) Influence of work shift on glutamic acid and gamma-aminobutyric acid (GABA): evaluation with proton magnetic resonance spectroscopy at 3 T. Psychiatry Res 192:55–59

    Article  CAS  PubMed  Google Scholar 

  38. Öz G, Tkáč I (2011) Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn Reson Med 65:901–910

    Article  PubMed  Google Scholar 

  39. Walter M, Henning A, Grimm S, Schulte RF, Beck J, Dydak U, Schnepf B, Boeker H, Boesiger P, Northoff G (2009) The relationship between aberrant neuronal activation in the pregenual anterior cingulate, altered glutamatergic metabolism, and anhedonia in major depression. Arch Gen Psychiatry 66:478–486

    Article  CAS  PubMed  Google Scholar 

  40. Henry ME, Lauriat TL, Shanahan M, Renshaw PF, Jensen JE (2011) Accuracy and stability of measuring GABA, glutamate, and glutamine by proton magnetic resonance spectroscopy: a phantom study at 4 tesla. J Magn Reson 208:210–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG: Wa2673/3-1), the ERA-NET Neuron Project SuppHab (MW), and Sonderforschungsbereich (SFB)-779 (MW, OS).

Conflict of interest

The authors have no conflict of interest.

Ethical standards

Measurements on human subjects in this study were approved by the local ethics committee and were, therefore, performed in accordance with the ethical standards laid down in the Declaration of Helsinki. All involved subjects gave their informed consent before recruitment in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqiang Dou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, W., Kaufmann, J., Li, M. et al. The separation of Gln and Glu in STEAM: a comparison study using short and long TEs/TMs at 3 and 7 T. Magn Reson Mater Phy 28, 395–405 (2015). https://doi.org/10.1007/s10334-014-0479-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-014-0479-7

Keywords

Navigation