Skip to main content
Log in

Longitudinal sensitivity to change of MRI-based muscle cross-sectional area versus isometric strength analysis in osteoarthritic knees with and without structural progression: pilot data from the Osteoarthritis Initiative

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Biomechanical measurement of muscle strength represents established technology in evaluating limb function. Yet, analysis of longitudinal change suffers from relatively large between-measurement variability. Here, we determine the sensitivity to change of magnetic resonance imaging (MRI)-based measurement of thigh muscle anatomical cross sectional areas (ACSAs) versus isometric strength in limbs with and without structural progressive knee osteoarthritis (KOA), with focus on the quadriceps.

Materials and methods

Of 625 “Osteoarthritis Initiative” participants with radiographic KOA, 20 had MRI cartilage and radiographic joint space width loss in the right knee isometric muscle strength measurement and axial T1-weighted spin-echo acquisitions of the thigh. Muscle ACSAs were determined from manual segmentation at 33 % femoral length (distal to proximal).

Results

In progressor knees, the reduction in quadriceps ACSA between baseline and 2-year follow-up was −2.8 ± 7.9 % (standardized response mean [SRM] = −0.35), and it was −1.8 ± 6.8 % (SRM = −0.26) in matched, non-progressive KOA controls. The decline in extensor strength was more variable than that in ACSAs, both in progressors (−3.9 ± 20 %; SRM = −0.20) and in non-progressive controls (−4.5 ± 28 %; SRM = −0.16).

Conclusion

MRI-based analysis of quadriceps muscles ACSAs appears to be more sensitive to longitudinal change than isometric extensor strength and is suggestive of greater loss in limbs with structurally progressive KOA than in non-progressive controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Segal NA, Glass NA (2011) Is quadriceps muscle weakness a risk factor for incident or progressive knee osteoarthritis? Phys Sportsmed 39:44–50

    Article  PubMed  Google Scholar 

  2. Roos EM, Herzog W, Block JA, Bennell KL (2011) Muscle weakness, afferent sensory dysfunction and exercise in knee osteoarthritis. Nat Rev Rheumatol 7:57–63

    Article  PubMed  Google Scholar 

  3. Bennell KL, Hunt MA, Wrigley TV, Lim BW, Hinman RS (2009) Muscle and exercise in the prevention and management of knee osteoarthritis: an internal medicine specialist’s guide. Med Clin North Am 93:161–177

    Article  PubMed  Google Scholar 

  4. Bennell KL, Hunt MA, Wrigley TV, Lim BW, Hinman RS (2008) Role of muscle in the genesis and management of knee osteoarthritis. Rheum Dis Clin North Am 34:731–754

    Article  PubMed  Google Scholar 

  5. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, Bierma-Zeinstra S, Brandt KD, Croft P, Doherty M, Dougados M, Hochberg M, Hunter DJ, Kwoh K, Lohmander LS, Tugwell P (2008) OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthr Cartil 16:137–162

    Article  CAS  PubMed  Google Scholar 

  6. Vincent KR, Vincent HK (2012) Resistance exercise for knee osteoarthritis. PM&R 4:S45–S52

    Article  Google Scholar 

  7. Forbes SC, Little JP, Candow DG (2012) Exercise and nutritional interventions for improving aging muscle health. Endocrine 42:29–38

    Article  CAS  PubMed  Google Scholar 

  8. Valenzuela T (2012) Efficacy of progressive resistance training interventions in older adults in nursing homes: a systematic review. J Am Med Dir Assoc 13:418–428

    Article  PubMed  Google Scholar 

  9. Hanson ED, Srivatsan SR, Agrawal S, Menon KS, Delmonico MJ, Wang MQ, Hurley BF (2009) Effects of strength training on physical function: influence of power, strength, and body composition. J Strength Cond Res 23:2627–2637

    Article  PubMed Central  PubMed  Google Scholar 

  10. Segal NA, Torner JC, Felson D, Niu J, Sharma L, Lewis CE, Nevitt M (2009) Effect of thigh strength on incident radiographic and symptomatic knee osteoarthritis in a longitudinal cohort. Arthr Rheum 61:1210–1217

    Article  Google Scholar 

  11. Segal NA, Glass NA, Felson DT, Hurley M, Yang M, Nevitt M, Lewis CE, Torner JC (2010) Effect of quadriceps strength and proprioception on risk for knee osteoarthritis. Med Sci Sports Exerc 42:2081–2088

    Article  PubMed Central  PubMed  Google Scholar 

  12. Segal NA, Glass NA, Torner J, Yang M, Felson DT, Sharma L, Nevitt M, Lewis CE (2010) Quadriceps weakness predicts risk for knee joint space narrowing in women in the MOST cohort. Osteoarthr Cartil 18:769–775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Segal NA, Torner JC, Felson DT, Niu J, Sharma L, Lewis CE, Nevitt M (2009) Knee extensor strength does not protect against incident knee symptoms at 30 months in the multicenter knee osteoarthritis (MOST) cohort. PM&R 1:459–465

    Article  Google Scholar 

  14. Mikesky AE, Mazzuca SA, Brandt KD, Perkins SM, Damush T, Lane KA (2006) Effects of strength training on the incidence and progression of knee osteoarthritis. Arthr Rheum 55:690–699

    Article  Google Scholar 

  15. Bennell KL, Hinman RS (2011) A review of the clinical evidence for exercise in osteoarthritis of the hip and knee. J Sci Med Sport 14:4–9

    Article  PubMed  Google Scholar 

  16. Curb JD, Ceria-Ulep CD, Rodriguez BL, Grove J, Guralnik J, Willcox BJ, Donlon TA, Masaki KH, Chen R (2006) Performance-based measures of physical function for high-function populations. J Am Geriatr Soc 54:737–742

    Article  PubMed  Google Scholar 

  17. Flint-Wagner HG, Lisse J, Lohman TG, Going SB, Guido T, Cussler E, Gates D, Yocum DE (2009) Assessment of a sixteen-week training program on strength, pain, and function in rheumatoid arthritis patients. J Clin Rheumatol 15:165–171

    Article  PubMed  Google Scholar 

  18. Ring-Dimitriou S, Steinbacher P, von Duvillard SP, Kaessmann H, Muller E, Sanger AM (2009) Exercise modality and physical fitness in perimenopausal women. Eur J Appl Physiol 105:739–747

    Article  PubMed  Google Scholar 

  19. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, Boudreau R, Manini TM, Nevitt M, Newman AB, Goodpaster BH (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90:1579–1585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. O’Reilly SC, Jones A, Muir KR, Doherty M (1998) Quadriceps weakness in knee osteoarthritis: the effect on pain and disability. Ann Rheum Dis 57:588–594

    Article  PubMed Central  PubMed  Google Scholar 

  21. Stevens JE, Mizner RL, Snyder-Mackler L (2003) Quadriceps strength and volitional activation before and after total knee arthroplasty for osteoarthritis. J Orthop Res 21:775–779

    Article  PubMed  Google Scholar 

  22. Hudelmaier M, Wirth W, Himmer M, Ring-Dimitriou S, Sanger A, Eckstein F (2010) Effect of exercise intervention on thigh muscle volume and anatomical cross-sectional areas-quantitative assessment using MRI. Magn Reson Med 64:1713–1720

    Article  PubMed  Google Scholar 

  23. Beattie KA, Macintyre NJ, Ramadan K, Inglis D, Maly MR (2012) Longitudinal changes in intermuscular fat volume and quadriceps muscle volume in the thighs of women with knee osteoarthritis. Arthr Care Res (Hoboken) 64:22–29

    Article  Google Scholar 

  24. Ornetti P, Brandt K, Hellio-Le Graverand MP, Hochberg M, Hunter DJ, Kloppenburg M, Lane N, Maillefert JF, Mazzuca SA, Spector T, Utard-Wlerick G, Vignon E, Dougados M (2009) OARSI-OMERACT definition of relevant radiological progression in hip/knee osteoarthritis. Osteoarthr Cartil 17:856–863

    Article  CAS  PubMed  Google Scholar 

  25. Eckstein F, Le Graverand MP, Charles HC, Hunter DJ, Kraus VB, Sunyer T, Nemirovskyi O, Wyman BT, Buck R (2011) Clinical, radiographic, molecular and MRI-based predictors of cartilage loss in knee osteoarthritis. Ann Rheum Dis 70:1223–1230

    Article  CAS  PubMed  Google Scholar 

  26. Eckstein F, Mc Culloch CE, Lynch JA, Nevitt M, Kwoh CK, Maschek S, Hudelmaier M, Sharma L, Wirth W (2012) How do short-term rates of femorotibial cartilage change compare to long-term changes? Four year follow-up data from the osteoarthritis initiative. Osteoarthr Cartil 20:1250–1257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Hudelmaier M, Glaser C, Hausschild A, Burgkart R, Eckstein F (2006) Effects of joint unloading and reloading on human cartilage morphology and function, muscle cross-sectional areas, and bone density—a quantitative case report. J Musculoskelet Neuronal Interact 6:284–290

    CAS  PubMed  Google Scholar 

  28. Sattler M, Dannhauer T, Hudelmaier M, Wirth W, Sanger AM, Kwoh CK, Hunter DJ, Eckstein F (2012) Side differences of thigh muscle cross-sectional areas and maximal isometric muscle force in bilateral knees with the same radiographic disease stage, but unilateral frequent pain—data from the osteoarthritis initiative. Osteoarthr Cartil 20:532–540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Eckstein F, Wirth W, Nevitt MC (2012) Recent advances in osteoarthritis imaging-the Osteoarthritis Initiative. Nat Rev Rheumatol 8:622–630

    Article  CAS  PubMed  Google Scholar 

  30. Eckstein F, Nevitt M, Gimona A, Picha K, Lee JH, Davies RY, Dreher D, Benichou O, Le Graverand MP, Hudelmaier M, Maschek S, Wirth W (2010) Rates of change and sensitivity to change in cartilage morphology in healthy knees and in knees with mild, moderate, and end-stage radiographic osteoarthritis: Results from 831 participants from the osteoarthritis initiative. Arthr Care Res (Hoboken) 63:311–319

    Google Scholar 

  31. Eckstein F, Cotofana S, Wirth W, Nevitt M, John MR, Dreher D, Frobell R (2011) Greater rates of cartilage loss in painful knees than in pain-free knees after adjustment for radiographic disease stage: data from the osteoarthritis initiative. Arthr Rheum 63:2257–2267

    Article  Google Scholar 

  32. Duryea J, Neumann G, Niu J, Totterman S, Tamez J, Dabrowski C, Le Graverand MP, Luchi M, Beals CR, Hunter DJ (2010) Comparison of radiographic joint space width with magnetic resonance imaging cartilage morphometry: analysis of longitudinal data from the Osteoarthritis Initiative. Arthr Care Res (Hoboken) 62:932–937

    Article  Google Scholar 

  33. Eckstein F, Gavazzeni A, Sittek H, Haubner M, Losch A, Milz S, Englmeier KH, Schulte E, Putz R, Reiser M (1996) Determination of knee joint cartilage thickness using three-dimensional magnetic resonance chondro-crassometry (3D MR-CCM). Magn Reson Med 36:256–265

    Article  CAS  PubMed  Google Scholar 

  34. Eckstein F, Sittek H, Gavazzeni A, Schulte E, Milz S, Kiefer B, Reiser M, Putz R (1996) Magnetic resonance chondro-crassometry (MR CCM): a method for accurate determination of articular cartilage thickness? Magn Reson Med 35:89–96

    Article  CAS  PubMed  Google Scholar 

  35. Graichen H, Eisenhart-Rothe R, Vogl T, Englmeier KH, Eckstein F (2004) Quantitative assessment of cartilage status in osteoarthritis by quantitative magnetic resonance imaging: technical validation for use in analysis of cartilage volume and further morphologic parameters. Arthr Rheum 50:811–816

    Article  Google Scholar 

  36. Wirth W, Duryea J, Hellio Le Graverand MP, John MR, Nevitt M, Buck RJ, Eckstein F (2013) Direct comparison of fixed flexion, radiography and MRI in knee osteoarthritis: responsiveness data from the Osteoarthritis Initiative. Osteoarthr Cartil 21:117–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Bruynesteyn K, Boers M, Kostense P, van der LS, van der HD (2005) Deciding on progression of joint damage in paired films of individual patients: smallest detectable difference or change. Ann Rheum Dis 64:179–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Eckstein F, Kunz M, Schutzer M, Hudelmaier M, Jackson RD, Yu J, Eaton CB, Schneider E (2007) Two year longitudinal change and test-retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative. Osteoarthr Cartil 15:1326–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Dannhauer T, Wirth W, Eckstein F (2010) Selection of comparable anatomical locations of muscle cross-sectional images in the Osteoarthritis Initiative MRI data. Osteoarthr Cartil 18:195 (abstract)

    Article  Google Scholar 

  40. Cotofana S, Hudelmaier M, Wirth W, Himmer M, Ring-Dimitriou S, Sanger AM, Eckstein F (2010) Correlation between single-slice muscle anatomical cross-sectional area and muscle volume in thigh extensors, flexors and adductors of perimenopausal women. Eur J Appl Physiol

  41. Hudelmaier M, Glaser C, Englmeier KH, Reiser M, Putz R, Eckstein F (2003) Correlation of knee-joint cartilage morphology with muscle cross-sectional areas vs. anthropometric variables. Anat Rec 270A:175–184

    Article  Google Scholar 

  42. Rantanen T, Era P, Heikkinen E (1997) Physical activity and the changes in maximal isometric strength in men and women from the age of 75 to 80 years. J Am Geriatr Soc 45:1439–1445

    CAS  PubMed  Google Scholar 

  43. Osteoarthritis Initiative (2008) Isometric strength (Isometric chair) operations manual. Osteoarthritis initiative documentation. http://oai.epi-ucsf.org/datarelease/operationsManuals/isometric_strengthv1_2p.pdf. Accessed 23 March 2013

  44. Eckstein F, Hitzl W, Duryea J, Kent KC, Wirth W (2013) Baseline and longitudinal change in isometric muscle strength prior to radiographic progression in osteoarthritic and pre-osteoarthritic knees—data from the Osteoarthritis Initiative. Osteoarthr Cartil 21:682–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Madsen OR, Bliddal H, Egsmose C, Sylvest J (1995) Isometric and isokinetic quadriceps strength in gonarthrosis; inter-relations between quadriceps strength, walking ability, radiology, subchondral bone density and pain. Clin Rheumatol 14:308–314

    Article  CAS  PubMed  Google Scholar 

  46. Riddle DL, Stratford PW (2011) Impact of pain reported during isometric quadriceps muscle strength testing in people with knee pain: data from the osteoarthritis initiative. Phys Ther 91:1478–1489

    Article  PubMed Central  PubMed  Google Scholar 

  47. Visser M, Schaap LA (2011) Consequences of sarcopenia. Clin Geriatr Med 27:387–399

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study and image acquisition was supported by the Osteoarthritis Initiative (OAI). The OAI is a public–private partnership comprised of five contracts (N01-AR-2-2258; N01-AR-2-2259; N01-AR-2-2260; N01-AR-2-2261; N01-AR-2-2262) funded by the National Institutes of Health, a branch of the Department of Health and Human Services, and conducted by the OAI Study Investigators. Private funding partners include Pfizer, Inc.; Novartis Pharmaceuticals Corporation; Merck Research Laboratories; and GlaxoSmithKline. Private sector funding for the OAI is managed by the Foundation for the National Institutes of Health. This manuscript has received the approval of the OAI Publications Committee based on a review of its scientific content and data interpretation. The image analysis was supported by the Paracelsus Medical University Forschungsfond (R-10-02-014-WIRTH). The funding sources took no active part of influence on the analysis of the data and in drafting or revising the article. However, the manuscript received the approval of the OAI Publications Committee based on a review of its scientific content and data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torben Dannhauer.

Additional information

The study was conducted for the OAI investigators.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dannhauer, T., Sattler, M., Wirth, W. et al. Longitudinal sensitivity to change of MRI-based muscle cross-sectional area versus isometric strength analysis in osteoarthritic knees with and without structural progression: pilot data from the Osteoarthritis Initiative. Magn Reson Mater Phy 27, 339–347 (2014). https://doi.org/10.1007/s10334-013-0418-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-013-0418-z

Keywords

Navigation