Skip to main content

Advertisement

Log in

1H-MRS of brain metabolites in migraine without aura: absolute quantification using the phantom replacement technique

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

Several studies have demonstrated differences in migraine patients when performing 1H-MRS; however, no studies have performed 1H-MRS in migraine without aura (MwoA), the most common migraine subtype. The aim of this 1H-MRS study was to elucidate whether any differences could be found between MwoA patients and controls by performing absolute quantification.

Materials and methods

1H-MRS was performed in 22 MwoA patients and 25 control subjects. Absolute quantification was based on the phantom replacement technique. Corrections were made for T1 and T2 relaxation effects, CSF content, coil loading and temperature. The method was validated by phantom measurements and in vivo measurements in the occipital visual cortex.

Results

After calibration of the quantification procedure and the implementation of the required correction factors, measured absolute concentrations in the visual cortex of MwoA patients showed no significant differences compared to controls, in contrast to relative results obtained in earlier studies.

Conclusion

In this study, we demonstrate the implementation of quantitative in vivo 1H-MRS spectroscopy in migraine patients. Despite rigorous quantification, no spectroscopic abnormalities could be found in patients with migraine without aura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lance JW, Goadsby PJ (1998) Mechanism and management of headache. Butterworth-Heinemann, Boston

    Google Scholar 

  2. Silberstein SD, Lipton RB, Goadsby PJ (1998). In: Goadsby PJ (ed) Headache in clinical practice, edn. Isis Medical Media, Oxford, pp 69–112

  3. Olesen J, Tfelt-Hansen P, Welch KMA (2000) The headaches. Williams & Wilkins, Philadelphia

    Google Scholar 

  4. The International Headache Society Classification Subcommittee: (2004) The international classification of headache disorders 2. Cephalalgia 24(S1): 1–160

    Google Scholar 

  5. Stovner LJ, Zwart JA, Hagen K, Terwindt GM, Pascual J (2006) Epidemiology of headache in Europe. Eur J Neurol 13(4): 333–345

    Article  CAS  PubMed  Google Scholar 

  6. Edmeads J, Mackell JA (2002) The economic impact of migraine: an analysis of direct and indirect costs. Headache 42(6): 501–509

    Article  PubMed  Google Scholar 

  7. Leonardi M, Steiner TJ, Scher AT, Lipton RB (2005) The global burden of migraine: measuring disability in headache disorders with WHOs classification of functioning, disability and health (ICF). J Headache Pain 6(6): 429–440

    Article  PubMed  Google Scholar 

  8. Schoenen J (1994) Pathogenesis of migraine: the biobehavioural and hypoxia theories reconciled. Acta Neurol Belg 94(2): 79–86

    CAS  PubMed  Google Scholar 

  9. Schoenen J (1998) Cortical electrophysiology in migraine and possible pathogenic implications. Clin Neurosci 5(1): 10–17

    CAS  PubMed  Google Scholar 

  10. Welch KM, Levine SR, D’Andrea G, Helpern JA (1988) Brain pH in migraine: an in vivo phosphorus-31 magnetic resonance spectroscopy study. Cephalalgia 8(4): 273–277

    Article  CAS  PubMed  Google Scholar 

  11. Welch KM, Levine SR, D’Andrea G, Schultz LR, Helpern JA (1989) Preliminary observations on brain energy metabolism in migraine studied by in vivo phosphorus 31 NMR spectroscopy. Neurology 39(4): 538–541

    CAS  PubMed  Google Scholar 

  12. Barbiroli B, Montagna P, Cortelli P, Martinelli P, Sacquegna T, Zaniol P, Lugaresi E (1990) Complicated migraine studied by phosphorus magnetic resonance spectroscopy. Cephalalgia 10(5): 263–272

    Article  CAS  PubMed  Google Scholar 

  13. Sacquegna T, Lodi R, De Carolis P, Tinuper P, Cortelli P, Zaniol P, Funicello R, Montagna P, Barbiroli B (1992) Brain energy metabolism studied by 31P-MR spectroscopy in a case of migraine with prolonged aura. Acta Neurol Scand 86(4): 376–380

    Article  CAS  PubMed  Google Scholar 

  14. Barbiroli B, Montagna P, Cortelli P, Funicello R, Iotti S, Monari L, Pierangeli G, Zaniol P, Lugaresi E (1992) Abnormal brain and energy metabolism shown by 31P magnetic resonance spectroscopy in patients affected by migraine with aura. Neurology 42(6): 1209–1214

    CAS  PubMed  Google Scholar 

  15. Montagna P, Cortelli P, Monari L, Pierangeli G, Parchi P, Lodi R, Iotti S, Frassineti C, Zaniol P, Lugaresi E, Barbiroli B (1994) 31P-Magnetic resonance spectroscopy in migraine without aura. Neurology 44(4): 666–669

    CAS  PubMed  Google Scholar 

  16. Uncini A, Lodi R, Di Muzio A, Silvestri G, Servidei S, Lugaresi A, Iotti S, Zaniol P, Barbiroli B (1995) Abnormal brain and muscle energy metabolism shown by 31P-MRS in familial hemiplegic migraine. J Neurol Sci 129(2): 214–222

    Article  CAS  PubMed  Google Scholar 

  17. Lodi R, Montagna P, Soriani S, Iotti S, Arnaldi C, Cortelli P, Pierangeli G, Patuelli A, Zaniol P, Barbiroli B (1997) Deficit of brain and skeletal muscle bioenergetics and low brain magnesium in juvenile migraine: an in vivo 31P magnetic resonance spectroscopy interictal study. Pediatr Res 42(6): 866–871

    Article  CAS  PubMed  Google Scholar 

  18. Boska MD, Welch KM, Barker PB, Nelson JA, Schultz L (2002) Contrasts in cortical magnesium, phospholipid and energy metabolism between migraine syndromes. Neurology 58(8): 1227–1233

    CAS  PubMed  Google Scholar 

  19. Watanabe H, Kuwabara T, Ohkubo M, Tsuji S, Yuasa T (1996) Elevation of cerebral lactate detected by localized 1H-magnetic resonance spectroscopy in migraine during the interictal period. Neurology 47(4): 1093–1095

    CAS  PubMed  Google Scholar 

  20. Sandor PS, Dydak U, Schoenen J, Kollias SS, Hess K, Boesiger P, Agosti RM (2005) MR-spectroscopic imaging during visual stimulation in subgroups of migraine with aura. Cephalalgia 25(7): 507–518

    Article  CAS  PubMed  Google Scholar 

  21. Sarchielli P, Tarducci R, Preciutti O, Gobbi G, Pelliccioli GP, Stipa G, Alberti A, Capocchi G (2005) Functional 1H-MRS findings in migraine patients with and without aura assessed interictally. Neuroimage 24(4): 1025–1031

    Article  PubMed  Google Scholar 

  22. Dichgans M, Herzog J, Freilinger T, Wilke M, Auer DP (2005) 1H-MRS alterations in the cerebellum of patients with familal hemiplegic migraine type 1. Neurology 64(4): 608–613

    CAS  PubMed  Google Scholar 

  23. Jacob A, Mahavish K, Bowden A, Smith ET, Enevoldson P, White RP (2006) Imaging abnormalities in sporadic hemiplegic migraine on conventional MRI, diffusion and perfusion MRI and MRS. Cephalalgia 26(8): 1004–1009

    Article  CAS  PubMed  Google Scholar 

  24. Schulz UG, Blamire AM, Corkill RG, Davies P, Styles P, Rothwell PM (2007) Association between cortical metabolite levels and clinical manifestations of migrainous aura: an MR-spectroscopy study. Brain 130(Pt12): 3102–3110

    Article  CAS  PubMed  Google Scholar 

  25. Gu T, Ma XX, Xu YH, Xiu JJ, Li CF (2008) Metabolite concentration ratios in thalami of patients with migraine and trigeminal neuralgia measured with 1H-MRS. Neurol Res 30(3): 229–233

    Article  CAS  PubMed  Google Scholar 

  26. Macri MA, Garreffa G, Giove F, Ambrosini A, Guardati M, Pierelli F, Schoenen J, Colonnese C, Maraviglia B (2003) Cerebellar metabolite alterations detected in vivo by proton MR spectroscopy. Magn Reson Imaging 21(10): 1201–1206

    Article  CAS  PubMed  Google Scholar 

  27. Ma Z, Wang SJ, Li CF, Ma XX, Gu T (2008) Increased metabolite concentration in migraine rat model by proton MR spectroscopy in vivo and ex vivo. Neurol Sci 29(5): 337–342

    Article  PubMed  Google Scholar 

  28. Grimaldi D, Tonon C, Cevoli S, Pierangeli G, Malucelli E, Rizzo G, Soriani S, Montagna P, Barbiroli B, Lodi R, Cortelli P (2010) Clinical and neuroimaging evidence of interictal cerebellar dysfunction in FHM2. Cephalalgia 30(5): 552–559

    CAS  PubMed  Google Scholar 

  29. Naressi A, Couturier C, Castang I, de Beer R, Graveron-Demilly D (2001) Java-based graphical user interface for MRUI, a software package for quantitation of in vivo/medical magnetic resonance spectroscopy signals. Comput Biol Med 31(4): 269–286

    Article  CAS  PubMed  Google Scholar 

  30. Laudadio T, Mastronardi N, Vanhamme L, Van Hecke P, Van Huffel S (2002) Improved Lanczos algorithms for blackbox MRS data quantitation. J Magn Reson 157(2): 292–297

    Article  CAS  PubMed  Google Scholar 

  31. Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate and efficient quantification of MRS data with use of prior knowledge. J Magn Reson 129(1): 35–43

    Article  CAS  PubMed  Google Scholar 

  32. Cavassila S, van Ormondt D, Graveron-Demilly D (2001) Cramer-rao bound analysis of spectroscopic signal processing methods. In: Yan H (eds) Signal processing for magnetic resonance imaging and spectroscopy, edn. Marcel Dekker, New York, pp 613–640

    Google Scholar 

  33. Tofts PS (2004) Spectroscopy: 1H metabolite concentrations. In: Tofts P (eds) Quantitative MRI of the brain: measuring changes caused by disease. John Wiley, Chichester, pp 299–340

    Google Scholar 

  34. Drost DJ, Riddle WD, Clarke GDAAPM MR Task Group #9: (2002) Proton magnetic resonance spectroscopy in the brain: report of AAPM MR Task Group #9. Med Phys 29(9): 2177– 2197

    Article  CAS  PubMed  Google Scholar 

  35. Kreis R (2004) Issues of spectral quality in clinical 1H magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17(6): 361–381

    Article  CAS  PubMed  Google Scholar 

  36. Tofts PS (1994) Standing waves in uniform water phantoms. J Magn Reson B 104(2): 143–147

    Article  CAS  Google Scholar 

  37. Insko EK, Bolinger L (1993) Mapping of the rafiofrequency field. J Magn Reson A 103(1): 82–85

    Article  CAS  Google Scholar 

  38. Helms G (2008) The principles of quantification applied to in vivo proton MR spectroscopy. Eur J Radiol 67(2): 218–229

    Article  PubMed  Google Scholar 

  39. Kreis R (1997) Quantitative localized 1H MR spectroscopy for clinical use. Prog Nucl Mag Res Sp 31: 155–195

    Article  CAS  Google Scholar 

  40. Hennig J, Pfister H, Ernst T, Ott D (1992) Direct absolute quantification of metabolites in the human brain with in vivo localized proton spectroscopy. NMR Biomed 5(4): 193–199

    Article  CAS  PubMed  Google Scholar 

  41. Soher BJ, van Zijl PC, Duyn JH, Barker PB (1996) Quantitative proton MR spectroscopic imaging of the human brain. Magn Reson Med 35(3): 356–363

    CAS  PubMed  Google Scholar 

  42. Helms G (2000) A precise and user-independent quantification technique for regional comparison of single volume proton MR spectroscopy of the human brain. NMR Biomed 13(7): 398–406

    Article  CAS  PubMed  Google Scholar 

  43. Hoult DI, Richards RE (1976) The signal-to-noise ratio of the nuclear magnetic resonance experiment. J Magn Reson 24(1): 71–85

    Google Scholar 

  44. Ernst T, Kreis R, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. I. Compartments and water. J Magn Reson B 102(1): 1–8

    Article  CAS  Google Scholar 

  45. Lynch J, Peeling J, Auty A, Sutherland GR (1993) Nuclear magnetic resonance study of cerebrospinal fluid from patients with multiple sclerosis. Can J Neurol Sci 20(3): 194–198

    CAS  PubMed  Google Scholar 

  46. Hetherington HP, Pan JW, Mason GF, Adams D, Vaughn MJ, Twieg DB, Pohost GM (1996) Quantitative 1H spectroscopic imaging of human brain at 4.1 T using image segmentation. Magn Reson Med 36(1): 21–29

    Article  CAS  PubMed  Google Scholar 

  47. Helms G (2003) T2-based segmentation of periventricular paragraph sign volumes for quantification of proton magnetic paragraph sign resonance spectra of multiple sclerosis lesions. Magn Reson Mater Phy 16(1): 10–16

    Article  CAS  Google Scholar 

  48. Connelly A, Jackson GD, Duncan JS, King MD, Gadian DG (2004) Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 44(8): 1411–1417

    Google Scholar 

  49. Lundbom N, Gaily E, Vuori K, Paetau R, Liukkonen E, Rajapakse JC, Valanne L, Hakkinen AM, Granstrom ML (2001) Proton spectroscopic imaging shows abnormalities in glial and neuronal cell pools in frontal lobe epilepsy. Epilepsia 42(12): 1507–1514

    Article  CAS  PubMed  Google Scholar 

  50. Mathews VP, Barker PB, Blackband SJ, Chatham JC, Bryan RN (1995) Cerebral metabolites in patients with acute and subacute strokes: concentrations determined by quantitative proton MR spectroscopy. AJR Am J Roentgenol 165(3): 633–638

    CAS  PubMed  Google Scholar 

  51. Chang L, Ernst T, Tornatore C, Aronow H, Melchor R, Walot I, Singer E, Conford M (2001) Metabolite abnormalities in progressive multifocal leukoencephalopathy by proton magnetic resonance spectroscopy. Neurology 48(4): 836–845

    Google Scholar 

  52. Mlynarik V, Gruber S, Moser E (2001) Proton T1 and T2 relaxation times of human brain metabolites at 3 Tesla. NMR Biomed 14(5): 325–331

    Article  CAS  PubMed  Google Scholar 

  53. Schirmer T, Auer DP (2000) On the reliability of quantitative clinical magnetic resonance spectroscopy of the human brain. NMR Biomed 13(1): 28–36

    Article  CAS  PubMed  Google Scholar 

  54. Ozdemir MS, Reyngoudt H, De Deene Y, Sazak HS, Fieremans E, Delputte S, D’Asseler Y, Derave W, Lemahieu I, Achten E (2007) Absolute quantification of carnosine in human calf muscle by proton magnetic resonance spectroscopy. Phys Med Biol 52(23): 6781–6794

    Article  CAS  PubMed  Google Scholar 

  55. Keevil SF, Barbiroli B, Brooks JC, Cady EB, Canese R, Carlier P, Collins DJ, Gilligan P, Gobbi G, Hennig J, Kugel H, Leach MO, Metzler D, Mlynarik V, Moser E, Newbold MC, Payne GS, Ring P, Roberts JN, Rowland IJ, Thiel T, Tkac I, Topp S, Wittsack HJ, Wylezinska M, Zaniol P, Henriksen O, Podo F (1998) Absolute metabolite quantification by in vivo NMR spectroscopy: II. A multicentre trial of protocols for in vivo localised proton studies of human brain. Magn Reson Imaging 16(9): 1093–1106

    Article  CAS  PubMed  Google Scholar 

  56. Ethofer T, Mader I, Seeger U, Helms G, Erb M, Grodd W, Ludolph A, Klose U (2003) Comparison of longitudinal metabolite relaxation times in different regions of the human brain at 1.5 and 3 Tesla. Magn Reson Med 50(6): 1296–1301

    Article  CAS  PubMed  Google Scholar 

  57. Frahm J, Bruhn H, Gyngell ML, Merboldt KD, Hanicke W, Sauter R (1989) Localized proton NMR spectroscopy in different regions of the humanbrain in vivo. Relaxation times and concentrations of cerebral metabolites. Magn Reson Med 11(1): 47–63

    Article  CAS  PubMed  Google Scholar 

  58. Kreis R, Fusch C, Maloca P, Felbinger J, Boesch C (1994) Supposed pathology may be individuality: interindividual and regional differences of brain metabolite concentration determined by 1H MRS. In Proceedings of 2nd meeting of the society of magnetic resonance. San Francisco, USA, 45pp

  59. Kreis R, Ernst T, Ross BD (1993) Absolute quantitation of water and metabolites in the human brain. II. Metabolite concentrations. J Magn Reson B 102(1): 9–19

    Article  CAS  Google Scholar 

  60. Clark JB (1998) N-acetyl aspartate: a marker forn neuronal loss or mitochondrial dysfunction. Dev Neurosci 20(4–5): 271–276

    Article  CAS  PubMed  Google Scholar 

  61. Lange T, Dydak U, Roberts TP, Rowley HA, Bjeljac M, Boesiger P (2006) Pitfalls in lactate measurements at 3T. AJNR Am J Neuroradiol 27(4): 895–901

    CAS  PubMed  Google Scholar 

  62. Clementi V, Tonon C, Lodi R, Malucelli E, Barbiroli B, Iotti S (2005) Assessment of glutamate and glutamine contribution to in vivo N-acetylaspartate quantification in human brain by 1H- magnetic resonance spectroscopy. Magn Reson Med 54(6): 1333–1339

    Article  CAS  PubMed  Google Scholar 

  63. Malucelli E, Manners DN, Testa C, Tonon C, Lodi R, Barbiroli B, Iotti S (2009) Pitfalls and advantages of different strategies for the absolute quantification of N-acetylaspartate, creatine and choline in white and grey matter by 1H-MRS. NMR Biomed 22(10): 1003–1013

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Achten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyngoudt, H., De Deene, Y., Descamps, B. et al. 1H-MRS of brain metabolites in migraine without aura: absolute quantification using the phantom replacement technique. Magn Reson Mater Phy 23, 227–241 (2010). https://doi.org/10.1007/s10334-010-0221-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-010-0221-z

Keywords

Navigation