Skip to main content
Log in

An oxygen-consuming phantom simulating perfused tissue to explore oxygen dynamics and 19F MRI oximetry

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

This study presents a reproducible phantom which mimics oxygen-consuming tissue and can be used for the validation of 19F MRI oximetry.

Materials and methods

The phantom consists of a haemodialysis filter of which the outer compartment is filled with a gelatin matrix containing viable yeast cells. Perfluorocarbon emulsions can be added to the gelatin matrix to simulate sequestered perfluorocarbons. A blood-substituting perfluorocarbon fluid is pumped through the lumen of the fibres in the filter. 19F relaxometry MRI is performed with a fast 2D Look-Locker imaging sequence on a clinical 3T scanner.

Results

Acute and perfusion-related hypoxia were simulated and imaged spatially and temporally using the phantom.

Conclusions

The presented experimental setup can be used to simulate oxygen consumption by somatic cells in vivo and for validating computational biophysical models of hypoxia, as measured with 19F MRI oximetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9(S5): 4–9

    Article  PubMed  Google Scholar 

  2. Tatum J, Kelloff G, Gillies R, Arbeit J, Brown J, Chao K, Chapman J, Eckelman W, Fyles A, Giaccia A, Hill R, Koch C, Krishna M, Krohn K, Lewis J, Mason R, Melillo G, Padhani A, Powis G, Rajendran J, Reba R, Robinson S, Semenza G, Swartz H, Vaupel P, Yang D, Croft B, Hoffman J, Liu G, Stone H, Sullivan D (2006) Hypoxia: Importance in tumor biology, noninvasive measurement by imaging, and value of its measurement in the management of cancer therapy. Int J Radiat Biol 82(10): 699–757

    Article  CAS  PubMed  Google Scholar 

  3. Verma A (2006) Oxygen-sensing in tumors. Curr Opin Clin Nutr Metab Care 9(4): 366–378

    Article  CAS  PubMed  Google Scholar 

  4. Davda S, Bezabeh T (2006) Advances in methods for assessing tumor hypoxia in vivo: implications for treatment planning. Cancer Metastasis Rev 25(3): 469–480

    Article  PubMed  Google Scholar 

  5. Overgaard J, Horsman MR (1996) Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 6(1): 10–21

    Article  PubMed  Google Scholar 

  6. Zhao D, Constantinescu A, Chang C-H, Hahn E, Mason R (2003) Correlation of tumor oxygen dynamics with radiation response of the dunning prostate R3327-HI tumor. Radiat Res 159: 621–631

    Article  CAS  PubMed  Google Scholar 

  7. Bourke VA, Zhao D, Gilio J, Chang CH, Jiang L, Hahn EW, Mason RP (2007) Correlation of radiation response with tumor oxygenation in the dunning prostate R3327-AT1 tumor. Int J Radiat Oncol Biol Phys 67(4): 1179–1186

    CAS  PubMed  Google Scholar 

  8. Stewart R, Li A (2007) BGRT: biologically guided radiation therapy—the future is fast approaching!. Med Phys 34(10): 3739– 3751

    Article  PubMed  Google Scholar 

  9. Vanderstraeten B, Duthoy W, Gersem WD, Neve WD, Thierens H (2006) [18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol 79(3): 249–258

    Article  CAS  PubMed  Google Scholar 

  10. Zhao D, Jiang L, Mason RP (2004) Measuring changes in tumor oxygenation. Meth Enzymol 386: 378–418

    Article  CAS  PubMed  Google Scholar 

  11. Kodibagkar VD, Wang X, Mason RP (2008) Physical principles of quantitative nuclear magnetic resonance oximetry. Front Biosci 13: 1371–1384

    Article  CAS  PubMed  Google Scholar 

  12. Mason R, Shukla H, Antich P (1993) In vivo oxygen tension and temperature: simultaneous determination using 19F NMR spectroscopy of perfluorocarbon. Magn Reson Med 29: 296–302

    Article  CAS  PubMed  Google Scholar 

  13. Zhao D, Constantinescu A, Hahn E, Mason R (2002) Differential oxygen dynamics in two diverse dunning prostate R3327 rat tumor sublines (MAT-Lu and HI) with respect to growth and respiratory challenge. Int J Radiat Oncol Biol Phys 53(3): 744–756

    PubMed  Google Scholar 

  14. Kim J, Zhao D, Song Y, Constantinescu A, Mason R, Liu H (2003) Interplay of tumor vascular oxygenation and tumor pO2 observed using near-infrared spectroscopy, an oxygen needle electrode, and 19F MR pO2 mapping. J Biomed Opt 8(1): 53–62

    Article  PubMed  Google Scholar 

  15. van der Sanden B, Heerschap A, Simonetti A, Rijken P, Peters H, Stüben G, van der Kogel A (1999) Characterization and validation of noninvasive oxygen tension measurements in human glioma xenografts by 19F-MR relaxometry. Int J Radiat Oncol Biol Phys 44(3): 649–658

    Article  PubMed  Google Scholar 

  16. Doll CM, Milosevic M, Pintilie M, HillRP Fyles AW (2003) Estimating hypoxic status in human tumors: a simulation using Eppendorf oxygen probe data in cervical cancer patients. Int J Radiat Oncol Biol Phys 55(5): 1239–1246

    PubMed  Google Scholar 

  17. Griffiths JR, Robinson SP (1999) The OxyLite: a fibre-optic oxygen sensor. Br J Radiol 72(859): 627–630

    CAS  PubMed  Google Scholar 

  18. Zhao D, Constantinescu A, Hahn E, Mason R (2001) Tumor oxygen dynamics with respect to growth and respiratory challange: investigation of the dunning prostate R3327-HI tumor. Radiat Res 156: 510–520

    Article  CAS  PubMed  Google Scholar 

  19. Jordan B, Cron G, Gallez B (2009) Rapid monitoring of oxygenation by 19F magnetic resonance imaging: simultaneous comparison with fluorescence quenching. Magn Reson Med 61: 634–638

    Article  PubMed  Google Scholar 

  20. Xia M, Kodibagkar V, Liu H, Mason RP (2006) Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19F magnetic resonance imaging in rats. Phys Med Biol 51: 45–60

    Article  CAS  PubMed  Google Scholar 

  21. Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49: 129–148

    Article  Google Scholar 

  22. Baudelet C, Gallez B (2002) How does blood oxygen level-dependent (BOLD) contrast correlate with oxygen partial pressure (pO2) inside tumors?. Magn Reson Med 48(6): 980–986

    Article  PubMed  Google Scholar 

  23. Matsumoto K-I, Bernardo M, Subramanian S, Choyke P, Mitchell J, Krishna MC, Lizak M (2006) MR assessment of changes of tumor in response to hyperbaric oxygen treatment. Magn Reson Med 56(2): 240–246

    Article  PubMed  Google Scholar 

  24. Kodibagkar V, Cui W, Merritt M, Mason R (2006) Novel 1H NMR approach to quantitative tissue oximetry using hexamethyldisiloxane. Magn Reson Med 55(4): 743–748

    Article  CAS  PubMed  Google Scholar 

  25. Parhami P, Fung BM (1983) Fluorine-19 relaxation study of perfluorochemicals as oxygen carriers. J Phys Chem 87(11): 1928–1931

    Article  CAS  Google Scholar 

  26. Thomas SR, Pratt RG, Millard RW, Samaratunga RC, Shiferaw Y, Clark LC, Hoffmann RE (1994) Evaluation of the influence of the aqueous phase bioconstituent environment on the F-19 T1 of perfluorocarbon blood substitute emulsions. J Magn Reson Imaging 4(4): 631–635

    Article  CAS  PubMed  Google Scholar 

  27. Eidelberg D, Johnson G, Barnes D, Tofts PS, Delpy D, Plummer D, McDonald W (1988) 19F NMR imaging of blood oxygenation in the brain. Magn Reson Med 6(3): 344–352

    Article  CAS  PubMed  Google Scholar 

  28. Delpuech J-J, Hamza M, Serratrice G, Stébé M-J (1979) Fluorocarbons as oxygen carriers. I. An NMR study of oxygen solutions in hexafluorobenzene. J Chem Phys 70(6): 2680–2687

    Article  CAS  Google Scholar 

  29. Hamza M, Serratrice G, Stébé M-J, Delpuech J-J (1981) Solute-solvent interactions in perfluorocarbon solutions of oxygen. An NMR study. J Am Chem Soc 103: 3733–3738

    Article  CAS  Google Scholar 

  30. Battino R, Rettich T, Tominaga T (1983) The solubility of oxygen and ozone in liquids. J Phys Chem Ref Data 12(2): 163–178

    Article  CAS  Google Scholar 

  31. Costa MF, Gomes JD, Menz D-H (2004) Solubility of dioxygen in seven fluorinated liquids. J Fluor Chem 125(9): 1325–1329

    Article  Google Scholar 

  32. Winslow RM (2005) Blood substitutes. Academic Press, New York

    Google Scholar 

  33. Yu J-X, Kodibagkar V, Cui W, Mason R (2005) 19F: a versatile reporter for non-invasive physiology and pharmacology using magnetic resonance. Curr Med Chem 12(7): 819–848

    Article  CAS  PubMed  Google Scholar 

  34. Fishman JE, Joseph PM, Carvlin MJ, Saadi-Elmandjra M, Mukherji B, Sloviter HA (1989) In vivo measurements of vascular oxygen tension in tumors using MRI of a fluorinated blood substitute. Invest Radiol 24(1): 65–71

    Article  CAS  PubMed  Google Scholar 

  35. Dardzinski B, Sotak C (1994) Rapid tissue oxygen tension mapping using 19F inversion-recovery echo-planar imaging of Perfluoro-15-crown-5-ether. Magn Reson Med 32(1): 88–97

    Article  CAS  PubMed  Google Scholar 

  36. Shukla H, Mason R, Woessner D, Antich P (1995) A comparison of three commercial perfluorocarbon emulsions as high-field 19F NMR probes of oxygen tension and temperature. J Magn Reson B 106(2): 131–141

    Article  CAS  Google Scholar 

  37. Mason R, Rodbumrung W, Antich P (1996) Hexafluorobenzene: a sensitive 19F NMR indicator of tumor oxygenation. NMR in Biomed 9(3): 125–134

    Article  CAS  Google Scholar 

  38. Shukla H, Mason R, Bansal N, Antich P (1996) Regional myocardial oxygen tension: 19F MRI of sequestered perfluorocarbon. Magn Reson Med 35: 827–833

    Article  CAS  PubMed  Google Scholar 

  39. Le D, Mason R, Hunjan S, Constantinescu A, Barker B, Antich P (1997) Regional tumor oxygen dynamics: 19F PBSR EPI of hexafluorobenzene. Magn Reson Med 15(8): 971–981

    CAS  Google Scholar 

  40. Hunjan S, Mason R, Constantinescu A, Peschke P, Hahn E, Antich P (1998) Regional tumor oximetry: 19F NMR spectroscopy of hexafluorobenzene. Int J Radiat Oncol Biol Phys 41(1): 161–171

    CAS  PubMed  Google Scholar 

  41. Hunjan S, Zhao D, Constantinescu A, Hahn EW, Antich PP, Mason RP (2001) Tumor oximetry: demonstration of an enhanced dynamic mapping procedure using fluorine-19 echo planar magnetic resonance imaging in the Dunning prostate R3327-AT1 rat tumor. Int J Radiat Oncol Biol Phys 49(4): 1097–1108

    CAS  PubMed  Google Scholar 

  42. Zhao D, Constantinescu A, Jiang L, Hahn EW, Mason RP (2001) Prognostic radiology: quantitative assessment of tumor oxygen dynamics by MRI. Am J Clin Oncol 24(5): 462–466

    Article  CAS  PubMed  Google Scholar 

  43. Fan X, River J, Zamora M, Al-Hallaq H, Karczmar G (2002) Effect of carbogen on tumor oxygenation: combined fluorine-19 and proton MRI measurements. Int J Radiat Oncol Biol Phys 54(4): 1202–1209

    Article  CAS  PubMed  Google Scholar 

  44. Nöth U, Rodrigues L, Robinson S, Jork A, Zimmermann U, Newell B, Griffiths J (2004) In vivo determination of tumor oxygenation during growth and in response to carbogen breathing using 15C5-loaded alginate capsules as fluorine-19 magnetic resonance imaging oxygen sensors. Int J Radiat Oncol Biol Phys 60(3): 909–919

    Article  PubMed  Google Scholar 

  45. Lee H, Price RR, Holburn GE, Partain CL, Adams MD, Cacheris WP (1994) In vivo fluorine-19 MR imaging: relaxation enhancement with Gd-DTPA. J Magn Reson Imaging 4(4): 609–613

    Article  CAS  PubMed  Google Scholar 

  46. Guo Q, Mattrey R, Guclu C, Buxton R, Nalcioglu O (1994) Monitoring of pO2 by spin-spin relaxation rate 1/T2 of 19F in a rabit abscess model. Art Cells Blood Subs Immob Biotech 22(4): 1449–1454

    Article  CAS  Google Scholar 

  47. McIntyre DJO, McCoy CL, Griffiths JR (1999) Tumour oxygenation measurements by F-19 magnetic resonance imaging of perfluorocarbons. Curr Sci 76(6): 753–762

    CAS  Google Scholar 

  48. Thomas SR, Pratt RG, Millard RW, Samaratunga RC, Shiferaw Y, Mcgoron AJ, Kim KT (1996) In vivo pO2 imaging in the porcine model with perfluoro carbon F-19 NMR at low field. Magn Reson Imaging 14(1): 103–114

    Article  CAS  PubMed  Google Scholar 

  49. Liu H, Gu Y, Kim J, Mason R (2004) Near-infrared spectroscopy and imaging of tumor vascular oxygenation. Method Enzymol 386: 349–378

    Article  CAS  Google Scholar 

  50. Pilarek M, Szewczyk K (2008) Effects of perfluorinated oxygen carrier application in yeast, fungi and plant cell suspension cultures. Biochem Eng J 41(1): 38–42

    Article  CAS  Google Scholar 

  51. Higuchi T, Naruse S, Horikawa Y, Hirakawa K, Tanaka C (1988) In vivo measurement of the partial pressure of oxygen in brain tissue using 19F-NMR. Proc 7th Soc Magn Res Med 1: 435

    Google Scholar 

  52. Brix G, Schad L, Deimling M, Lorenz W (1990) Fast and precise T1 imaging using a TOMROP sequence. Magn Reson Imaging 8(4): 351–356

    Article  CAS  PubMed  Google Scholar 

  53. Gowland PA, Leach MO (1992) Fast and accurate measurements of T1 using a multi-readout single inversion-recovery sequence. Magn Reson Med 26(1): 79–88

    Article  CAS  PubMed  Google Scholar 

  54. Nkongchu K, Santyr G (2005) An improved 3-D Look-Locker imaging method for T1 parameter estimation. Magn Reson Imaging 23(7): 801–807

    Article  PubMed  Google Scholar 

  55. Nkongchu K, Santyr G (2007) Phase-encoding strategies for optimal spatial resolution and T1 accuracy in 3D Look-Locker imaging. Magn Reson Imaging 25(8): 1203–1214

    Article  PubMed  Google Scholar 

  56. Ronco C, Ballestri M, Brendolan A (2000) New developments in hemodialyzers. Blood Purif 18(4): 267–275

    Article  CAS  PubMed  Google Scholar 

  57. Sumitani M, Takagi S, Tanamura Y, Inoue H (2004) Oxygen indicator composed of an organic/inorganic hybrid compound of methylene blue, reductant, surfactant and saponite. Anal Sci 20(8): 1153–1157

    Article  CAS  PubMed  Google Scholar 

  58. Freire M, Carvalho P, Queimada A, Marrucho I, Coutinho J (2006) Surface Tension of liquid fluorocompounds. J Chem Eng Data 51(5): 1820–1824

    Article  CAS  Google Scholar 

  59. Partlow KC, Chen JJ, Brant JA, Neubauer AM, Meyerrose TE, Creer MH, Nolta JA, Caruthers SD, Lanza GM, Wickline SA (2007) F-19 magnetic resonance imaging for stem/progenitor cell tracking with multiple unique perfluorocarbon nanobeacons. FASEB J 21: 1647–1654

    Article  CAS  PubMed  Google Scholar 

  60. Deppisch R, Storr M, Buck R, Gohl H (1998) Blood material interactions at the surfaces of membranes in medical applications. Sep Purif Technol 14: 241–254

    Article  CAS  Google Scholar 

  61. Secomb T, Hsu R, Braun R, Ross J, Gross J, Dewhirst M (1988) Theoretical simulation of oxygen transport to tumors by three-dimensional networks of microvessels. Adv Exp Med Biol 454: 629–634

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven H(ubert) Baete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baete, S.H., Vandecasteele, J., Colman, L. et al. An oxygen-consuming phantom simulating perfused tissue to explore oxygen dynamics and 19F MRI oximetry. Magn Reson Mater Phy 23, 217–226 (2010). https://doi.org/10.1007/s10334-010-0219-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-010-0219-6

Keywords

Navigation