Skip to main content

Advertisement

Log in

MR temperature monitoring applying the proton resonance frequency method in liver and kidney at 0.2 and 1.5 T: segment-specific attainable precision and breathing influence

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

The objective of this study was to evaluate breathing influence on precision in temperature determination by using the proton resonance frequency (PRF) shift method depending on the location in abdominal organs at 0.2 and 1.5 T.

Materials and Methods

Phase images were acquired with gradient echo sequences in a total of 12 volunteers at 1.5 and 0.2 T. Different examination protocols were performed (each 8 measurements with (1) in-/expiration, (2) free breathing, (3) under breathhold, (4) with breathing belt triggering, and (5) with navigator triggering (integrated in MR signal acquisition). Regions of interest were placed on liver and kidneys, and the resulting phase differences between the measurements were transformed into corresponding temperature differences.

Results

Precision significantly varied depending on the liver segment or location in the kidney. Gating techniques were found better than breathhold techniques and clearly better than non-gated examinations. The most precise approach reached a standard deviation of 2.0°C under continuous breathing when navigator gating was used at 1.5 T.

Conclusion

PRF temperature measurement is feasible even for moving organs in the abdomen at 0.2 and 1.5 T. The location of the target region and the required precision of the measurements should direct the choice of examination mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldberg SN, Dupuy DE (2001) Image-guided radiofrequency tumor ablation: challenges and opportunities. I J Vasc Interv Radiol 12: 1021–1032

    Article  Google Scholar 

  2. Goldberg SN, Stein MC, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME (2001) Radiofrequency tissue ablation: physical principles and techniques for increasing coagulation necrosis. Hepatogastroenterology 48: 359–367

    PubMed  CAS  Google Scholar 

  3. Lu MD, Xu HX, Xie XY, Yin XY, Chen JW, Kuang M, Xu ZF, Liu GJ, Zheng YL (2005) Percutaneous microwave and radiofrequency ablation for hepatocellular carcinoma: a retrospective comparative study. J Gastroenterol 40(11): 1054–1060

    Article  PubMed  Google Scholar 

  4. Vogl TJ, Straub R, Eichler K, Sollner O, Mack MG (2004) Colorectal carcinoma metastases in liver: laser-induced interstitial thermotherapy—local tumor control rate and survival data. Radiology 230(2): 450–458

    Article  PubMed  Google Scholar 

  5. Wu F, Wang ZB, Chen WZ, Zhu H, Bai J, Zou JZ, Li KQ, Jin CB, Xie FL, Su HB (2004) Extracorporeal high intensity focused ultrasound ablation in the treatment of patients with large hepatocellular carcinoma. Ann Surg Oncol 11(12): 1061–1069

    Article  PubMed  Google Scholar 

  6. Silverman SG, Tuncali K, Adams DF, van Sonnenberg E, Zou KH, Kacher DF, Morrison PR, Jolesz FA (2000) MR imaging-guided percutaneous cryotherapy of liver tumors: initial experience. Radiology 217: 657–664

    PubMed  CAS  Google Scholar 

  7. Jungraithmayr W, Burger D, Olschewski M, Eggstein S (2005) Cryoablation of malignant liver tumors: results of a single center study. Hepatobiliary Pancreat Dis Int 4(4): 554–560

    PubMed  Google Scholar 

  8. Leyendecker JR, Dodd GD 3rd, Halff GA, McCoy VA, Napier DH, Hubbard LG, Chintapalli KN, Chopra S, Washburn WK, Esterl RM, Cigarroa FG, Kohlmeier RE, Sharkey FE (2002) Sonographically observed echogenic response during intraoperative radiofrequency ablation of cirrhotic livers: pathologic correlation. Am J Roentgenol 178: 1147–1151

    Google Scholar 

  9. Vigen KK, Jarrard J, Rieke V, Frisoli J, Daniel BL, Pauly KB (2006) In vivo porcine liver radiofrequency ablation with simultaneous MR temperature mapping. J Magn Reson Imaging 23: 578–584

    Article  PubMed  Google Scholar 

  10. Seror O, Lepetit-Coiffé M, Le Bail B, de Senneville BD, Trillaud H, Moonen C, Quesson B (2008) Real Time monitoring of radiofrequency ablation based on MR thermometry and thermal dose in pig liver in vivo. Eur Radiol 18: 408–416

    Article  PubMed  Google Scholar 

  11. Venancio T, Engelsberg M, Azeredo RB, Colnago LA (2006) Thermal diffusivity and nuclear spin relaxation: a continuous wave free precession NMR study. J Magn Reson 181(1): 29–34

    Article  PubMed  CAS  Google Scholar 

  12. Parker DL, Smith V, Sheldon P, Crooks LE, Fussel L (1983) Temperature distribution measurements in two-dimensional NMR imaging. Med phys 10: 321–325

    Article  PubMed  CAS  Google Scholar 

  13. Jolesz FA, Bleier AR, Jakab P, Ruenzel PW, Huttl K, Jako GJ (1988) MR imaging of laser-tissue interactions. Radiology 168: 245–253

    Google Scholar 

  14. Gellermann J, Hildebrandt B, Issels R, Ganter H, Wlodarczyk W, Budach V, Felix R, Tunn PU, Reichardt P, Wust P (2006) Noninvasive magnetic resonance thermography of soft tissue sarcomas during regional hyperthermia: correlation with response and direct thermometry. Cancer 107(6): 1373–1382

    Article  PubMed  Google Scholar 

  15. Hindman JC (1966) Proton resonance shift of water in the gas and liquid state. J Chem Phys 44: 4582–4592

    Article  CAS  Google Scholar 

  16. De Poorter J (1995) Noninvasive MRI thermometry with the proton resonance frequency method: study of susceptibility effects. Magn Reson Med 34(3): 359–367

    Article  PubMed  Google Scholar 

  17. De Poorter J, De Wagter C, De Deene Y, Thomsen C, Ståhlberg F, Achten E (1995) Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle. Magn Reson Med 33(1): 74–81

    Article  PubMed  Google Scholar 

  18. Peters RD, Hinks RS, Henkelman RM (1998) Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry. Magn Reson Med 40(3): 454–459

    Article  PubMed  CAS  Google Scholar 

  19. Botnar RM, Steiner P, Dubno B, Erhart P, von Schulthess GK, Debatin JF (2001) Temperature quantification using the proton frequency shift technique: In vitro and in vivo validation in an open 0.5 tesla interventional MR scanner during RF ablation. J Magn Reson Imaging 13(3): 437–444

    Article  PubMed  CAS  Google Scholar 

  20. Weidensteiner C, Kerioui N, Quesson B, de Senneville BD, Trillaud H, Moonen CT (2004) Stability of real-time MR temperature mapping in healthy and diseased human liver. J Magn Reson Imaging 19(4): 438–446

    Article  PubMed  Google Scholar 

  21. De Zwart JA, Vimeux FC, Palussière J, Salomir R, Quesson B, Delalande C, Moonen CT (2001) On-line correction and visualization of motion during MRI-controlled hyperthermia. Magn Reson Med 45(1): 128–137

    Article  PubMed  Google Scholar 

  22. Seror O, Lepetit-Coiffé M, Quesson B, Trillaud H, Moonen CT (2006) Quantitative magnetic resonance temperature mapping for real-time monitoring of radiofrequency ablation of the liver : an ex vivo study. Eur Radiol 16: 2265–2274

    Article  PubMed  Google Scholar 

  23. Vigen KK, Daniel BL, Pauly JM (2003) Triggered, navigated, multi-baseline method for proton resonance frequency temperature mapping with respiratory motion. Magn Reson Med 50(5): 1003–1010

    Article  PubMed  Google Scholar 

  24. Shmatukha AV, Bakker CJG (2006) Correction of proton resonance frequency shift temperature maps for magnetic field disturbances caused by breathing. Phys Med Biol 41: 4689–705

    Article  Google Scholar 

  25. Shmatukha MS, Harvey PR, Bakker CJG (2007) Correction of proton resonance frequency shift temperature maps for magnetic field disturbances using fat signal. J Magn Reson Imaging 25: 579–87

    Article  PubMed  Google Scholar 

  26. Lepetit-Coiffé M, Quesson B, Seror O, Dumont E, Le Bail B, Moonen CT, Trillaud H (2006) Real-time monitoring of radiofrequency ablation of rabbit liver by respiratory-gated quantitative temperature MRI. J Magn Reson Imaging 24: 152–159

    Article  PubMed  Google Scholar 

  27. Cline HE, Hynynen K, Schneider E, Hardy CJ, Maier SE, Watkins RD, Jolesz FA (1996) Simultaneous magnetic resonance phase and magnitude temperature maps in muscle. Magn Reson Med 35(3): 309–315

    PubMed  CAS  Google Scholar 

  28. Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12(4): 525–533

    Article  PubMed  CAS  Google Scholar 

  29. Chung AH, Hynynen K, Colucci V, Oshio K, Cline HE, Jolesz FA (1996) Optimization of spoiled gradient-echo phase imaging for in vivo location of a focused ultrasound beam. Magn Reson Med 36(5): 745–752

    Article  PubMed  CAS  Google Scholar 

  30. Ishihara Y, Calderon A, Watanabe H (1995) A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 34(6): 814–823

    Article  PubMed  CAS  Google Scholar 

  31. Chung YC, Duerk JL, Shankaranarayanan A, Hampke M, Merkle EM, Lewin JS (1999) Temperature measurement using echo-shifted FLASH at low field for interventional MRI. J Magn Reson Imaging 9: 138–145

    Article  PubMed  CAS  Google Scholar 

  32. Couinaud C (1957) Le Foie: Etudes anatomiques et chirurgicales. Masson, Paris, France

  33. Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58(3): 545–554

    Article  Google Scholar 

  34. Graham SJ, Bronskill MJ, Henkelman RM (1998) Time and temperature dependence of MR parameters during thermal coagulation of ex vivo rabbit muscle. Magn Reson Med 39(2): 198–03

    Article  PubMed  CAS  Google Scholar 

  35. De Zwart JA, van Gelderen P, Kelly DJ, Moonen CT (1996) Fast magnetic resonance temperature imaging. J Magn Reson B 112: 86–90

    Article  PubMed  Google Scholar 

  36. Boss A, Graf H, Müller-Bierl B, Clasen S, Schmidt D, Pereira PL, Schick F (2005) Magnetic susceptibility effects on the accuracy of MR temperature monitoring by the proton resonance frequency method. J Magn Reson Imaging 22: 813–820

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hansjörg Rempp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rempp, H., Martirosian, P., Boss, A. et al. MR temperature monitoring applying the proton resonance frequency method in liver and kidney at 0.2 and 1.5 T: segment-specific attainable precision and breathing influence. Magn Reson Mater Phy 21, 333–343 (2008). https://doi.org/10.1007/s10334-008-0139-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-008-0139-x

Keywords

Navigation