Skip to main content
Log in

Functional MRI study of PASAT in normal subjects

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

The paced auditory serial addition test (PASAT) is routinely used to evaluate the cognitive part of the multiple sclerosis functional composite (MSFC) score, the new reference index of patient disability. PASAT is sensitive to subtle cognitive impairment related to MS, although the cognitive components of this test still remain unclear. In order to better characterize brain systems involved during this complex task, functional magnetic resonance imaging (fMRI) experiments were conducted during PASAT in a population of ten normal subjects. The paradigm consisted of a series of 61 single-digit numbers delivered every 3 s. After each number, subjects were asked to overt vocalize the result of the addition of the two last numbers heard. A control task consisting of the repetition of the same series of single-digit numbers was used. Statistical group analysis was performed using the random effect procedure (SPM 99). Cortical activation was observed in the left prefontal cortex, the supplementary motor area, the lateral premotor cortex, the cingulate gyrus, the left parietal lobe, the left superior temporal gyrus, the left temporal pole, and visual associative areas. fMRI activations underlying PASAT were consistent with an involvement of verbal working memory and the semantic memory retrieval network which could be related to arithmetic fact retrieval. This study on normal subjects could provide a base for the understanding of the potential abnormal cortical activation in MS patients performing this test for a cognitive evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gronwall DM (1977) Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills 44:367–373

    CAS  PubMed  Google Scholar 

  2. Boringa JB, Lazeron RH, Reuling IE, Ader HJ et al. (2001) The brief repeatable battery of neuropsychological tests: normative values allow application in multiple sclerosis clinical practice. Mult Scler 7:263–267

    Article  CAS  PubMed  Google Scholar 

  3. Cutter GR, Baier ML, Rudick RA, Cookfair DL et al. (1999) Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 122:871–882

    Article  PubMed  Google Scholar 

  4. Fischer JS, Rudick RA, Cutter GR, Reingold SC (1999) The multiple sclerosis functional composite measure (MSFC): an integrated approach to MS clinical outcome assessment. National MS society clinical outcomes assessment task force. Mult Scler 5:244–250

    Article  CAS  PubMed  Google Scholar 

  5. Christodoulou C, DeLuca J, Ricker JH, Madigan NK et al. (2001) Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. J Neurol Neurosurg Psychiatry 71:161–168

    Article  CAS  PubMed  Google Scholar 

  6. Staffen W, Mair A, Zauner H, Unterrainer J et al. (2002) Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain 125:1275–1282

    Article  CAS  PubMed  Google Scholar 

  7. de Zubicaray GI, Wilson SJ, McMahon KL, Muthiah S (2001) The semantic interference effect in the picture-word paradigm: an event-related fMRI study employing overt responses. Hum Brain Mapp 14:218–227

    Article  PubMed  Google Scholar 

  8. Fos LA, Greve KW, South MB, Mathias C et al. (2000) Paced visual serial addition test: an alternative measure of information processing speed. Appl Neuropsychol 7:140–146

    Article  CAS  PubMed  Google Scholar 

  9. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  10. Friston KJ, Holmes AP, Price CJ, Buchel C et al. (1999) Multisubject fMRI studies and conjunction analyses. Neuroimage 10:385–396

    Article  CAS  PubMed  Google Scholar 

  11. Baddeley A (1992) Working memory. Science 255:556–559

    CAS  PubMed  Google Scholar 

  12. Baddeley A (1986) Working memory. Oxford University, Oxford

  13. Smith EE, Jonides J (1998) Neuroimaging analyses of human working memory. Proc Natl Acad Sci USA 95:12061–12068

    Article  CAS  PubMed  Google Scholar 

  14. Fiez JA, Raife EA, Balota DA, Schwarz JP et al (1996) A positron emission tomography study of the short-term maintenance of verbal information. J Neurosci 16:808–822

    CAS  PubMed  Google Scholar 

  15. Salmon E, Van der Linden M, Collette F, Delfiore G et al. (1996) Regional brain activity during working memory tasks. Brain 119:1617–1625

    PubMed  Google Scholar 

  16. Della Sala S, Logie RH, Marchetti C, Wynn V (1991) Case studies in working memory: a case for single cases? Cortex 27:169–191

    PubMed  Google Scholar 

  17. Shallice T, Fletcher P, Frith CD, Grasby P et al. (1994) Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature 368:633–635

    Article  CAS  PubMed  Google Scholar 

  18. Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362:342–345

    Article  CAS  PubMed  Google Scholar 

  19. Petrides M, Alivisatos B, Meyer E, Evans AC (1993) Functional activation of the human frontal cortex during the performance of verbal working memory tasks. Proc Natl Acad Sci USA 90:878–882

    CAS  PubMed  Google Scholar 

  20. D’Esposito M, Detre JA, Alsop DC, Shin RK et al. (1995) The neural basis of the central executive system of working memory. Nature 378:279–281

    Article  PubMed  Google Scholar 

  21. D’Esposito M, Postle BR, Rypma B (2000) Prefrontal cortical contributions to working memory: evidence from event-related fMRI studies. Exp Brain Res 133:3–11

    Article  PubMed  Google Scholar 

  22. Petrides M (1994) Frontal lobes and behaviour. Curr Opin Neurobiol 4:207–211

    Article  CAS  PubMed  Google Scholar 

  23. Owen AM, Stern CE, Look RB, Tracey I et al. (1998) Functional organization of spatial and nonspatial working memory processing within the human lateral frontal cortex. Proc Natl Acad Sci USA 95:7721–7726

    Article  CAS  PubMed  Google Scholar 

  24. Chao LL, Knight RT (1998) Contribution of human prefrontal cortex to delay performance. J Cogn Neurosci 10:167–177

    Article  CAS  PubMed  Google Scholar 

  25. Christoff K, Prabhakaran V, Dorfman J, Zhao Z et al. (2001) Rostrolateral prefrontal cortex involvement in relational integration during reasoning. Neuroimage 14:1136–1149

    Article  CAS  PubMed  Google Scholar 

  26. Koechlin E, Basso G, Pietrini P, Panzer S et al. (1999) The role of the anterior prefrontal cortex in human cognition. Nature 399:148–151

    Article  CAS  PubMed  Google Scholar 

  27. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661

    Article  CAS  PubMed  Google Scholar 

  28. Bush G, Whalen PJ, Rosen BR, Jenike MA et al. (1998) The counting stroop: an interference task specialized for functional neuroimaging – validation study with functional MRI . Hum Brain Mapp 6:270–282

    Article  CAS  PubMed  Google Scholar 

  29. McCloskey M, Caramazza A, Basili A (1985) Cognitive mechanisms in number processing and calculation: evidence from dyscalculia. Brain Cogn 4:171–196

    Article  CAS  PubMed  Google Scholar 

  30. Dehaene S (1992) Varieties of numerical abilities. Cognition 44:1–42

    Article  CAS  PubMed  Google Scholar 

  31. Ashcraft MH (1992) Cognitive arithmetic: a review of data and theory. Cognition 44:75–106

    Article  CAS  PubMed  Google Scholar 

  32. Pesenti M, Seron X, van der Linden M (1994) Selective impairment as evidence for mental organisation of arithmetical facts: BB, a case of preserved subtraction? Cortex 30:661–671

    CAS  PubMed  Google Scholar 

  33. Kroll NE, Markowitsch HJ, Knight RT, von Cramon DY (1997) Retrieval of old memories: the temporofrontal hypothesis. Brain 120:1377–1399

    Article  PubMed  Google Scholar 

  34. Markowitsch HJ (1995) Which brain regions are critically involved in the retrieval of old episodic memory? Brain Res Brain Res Rev 21:117–127

    Article  CAS  PubMed  Google Scholar 

  35. Gainotti G, Silveri MC, Daniele A, Giustolisi L (1995) Neuroanatomical correlates of category-specific semantic disorders: a critical survey. Memory 3:247–264

    CAS  PubMed  Google Scholar 

  36. De Renzi E, Lucchelli F (1994) Are semantic systems separately represented in the brain? The case of living category impairment. Cortex 30:3–25

    PubMed  Google Scholar 

  37. Grabowski TJ, Damasio H, Tranel D, Ponto LL et al. (2001) A role for left temporal pole in the retrieval of words for unique entities. Hum Brain Mapp 13:199–212

    Article  CAS  PubMed  Google Scholar 

  38. Noppeney U, Price CJ (2002) Retrieval of visual, auditory, and abstract semantics. Neuroimage 15:917–926

    Article  CAS  PubMed  Google Scholar 

  39. Damasio H, Grabowski TJ, Tranel D, Hichwa RD et al. (1996) A neural basis for lexical retrieval. Nature 380:499–505

    Article  CAS  PubMed  Google Scholar 

  40. Zago L, Pesenti M, Mellet E, Crivello F et al. (2001) Neural correlates of simple and complex mental calculation. Neuroimage 13:314–327

    Article  CAS  PubMed  Google Scholar 

  41. Dehaene S, Tzourio N, Frak V, Raynaud L et al. (1996) Cerebral activations during number multiplication and comparison: a PET study. Neuropsychologia 34:1097–1106

    Article  CAS  PubMed  Google Scholar 

  42. Rickard TC, Romero SG, Basso G, Wharton C et al. (2000) The calculating brain: an fMRI study. Neuropsychologia 38:325–335

    Article  CAS  PubMed  Google Scholar 

  43. Chochon F, Cohen L, van de Moortele PF, Dehaene S (1999) Differential contributions of the left and right inferior parietal lobules to number processing. J Cogn Neurosci 11:617–630

    Article  CAS  PubMed  Google Scholar 

  44. Dehaene S, Dehaene-Lambertz G, Cohen L (1998) Abstract representations of numbers in the animal and human brain. Trends Neurosci 21:355–361

    Article  CAS  PubMed  Google Scholar 

  45. Cowell SF, Egan GF, Code C, Harasty J et al. (2000) The functional neuroanatomy of simple calculation and number repetition: a parametric PET activation study. Neuroimage 12:565–573

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments.

This work is funded by the CNRS (UMR 6612), the Institut Universitaire de France, the Association pour la Recherche contre la Sclérose en Plaques (ARSEP) and Biogen France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Ranjeva.

Additional information

This revised version was published in March 2005 with corrections to the history.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audoin, B., Ibarrola, D., Duong, M. et al. Functional MRI study of PASAT in normal subjects. MAGMA 18, 96–102 (2005). https://doi.org/10.1007/s10334-004-0098-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-004-0098-9

Keywords

Navigation