Skip to main content

Advertisement

Log in

Brain T2 relaxation times correlate with regional cerebral blood volume

  • Short Communication
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

We previously reported cerebellar and putaminal transverse relaxation time (T2) differences in children with ADHD and in adults with childhood trauma. As brain T2 can be altered by deoxyhemoglobin concentration ([dHb]) and because [dHb] is proportional to regional cerebral blood volume (rCBV), at steady state we attributed those differences to rCBV changes. Studies in other species have established a correlation between T2 and rCBV; however this has yet to be demonstrated in human brain. Echo planar imaging (EPI) T2 relaxometry and dynamic susceptibility-contrast (DSC) MRI were used to measure T2 and rCBV in 11 healthy adults. Significant T2-rCBV correlations were observed in both cerebellar vermis and putamen (r=0.759,p=0.007;r=0.782,p=0.004, respectively). These correlations predict 9±3% and 10±3% rCBV changes, respectively, for each 1-msec change in T2. Consequently, brain T2 measurements may be useful for estimating steady-state rCBV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tankard CF, Waldstein SR, Siegel EL, Holder LE, Lefkowitz D, Anstett F, Katzel LI (2003) Cerebral blood flow and anxiety in older men: an analysis of resting anterior asymmetry and prefrontal regions. Brain Cogn 52:70–78

    PubMed  Google Scholar 

  2. Volkow ND, Fowler JS, Wang GJ (2003) Positron emission tomography and single-photon emission computed tomography in substance abuse research. Semin Nucl Med 33:114–128

    PubMed  Google Scholar 

  3. Schweitzer JB, Lee DO, Hanford RB, Tagamets MA, Hoffman JM, Grafton ST, Kilts CD (2003) A positron emission tomography study of methylphenidate in adults with ADHD: Alterations in resting blood flow and predicting treatment response. Neuropsychopharmacology 28:967–973

    Google Scholar 

  4. Videbech P, Ravnkilde B, Pedersen TH, Hartvig H, Egander A, Clemmensen K, Rasmussen NA, Andersen F, Gjedde A, Rosenberg R (2002) The Danish PET/depression project: clinical symptoms and cerebral blood flow. A regions-of-interest analysis. Acta Psychiatr Scand 106:35–44

    CAS  PubMed  Google Scholar 

  5. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, et al. (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    CAS  PubMed  Google Scholar 

  6. Kumari V, Gray JA, Ffytche DH, Mitterschiffthaler MT, Das M, Zachariah E, Vythelingum GN, Williams SCR, Simmons A, Sharma T (2003) Cognitive effects of nicotine in humans: an fMRI study. Neuroimage 19:1002–1013

    PubMed  Google Scholar 

  7. Xi ZX, Wu GH, Stein EA, Li SJ (2002) GABAergic mechanisms of heroin-induced brain activation assessed with functional MRI. Magn Reson Med 48:838–843

    Google Scholar 

  8. Kaufman MJ, Levin JM, Maas LC, Kukes TJ, Villafuerte RA, Dostal K, Lukas SE, Mendelsohn JH, Cohen BM, Renshaw PF (2001) Cocaine-induced cerebral vasoconstriction differs as a function of sex and menstrual cycle phase. Biol Psychiatry 49:774–781

    CAS  PubMed  Google Scholar 

  9. Cohen ER, Ugurbil K, Kim SG (2002) Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 22:1042–1053

    Google Scholar 

  10. Belliveau JW, Rosen BR, Kantor HL, Rzedzian RR, Kennedy DN, McKinstry RC, Vevea JM, Cohen MS, Pykett IL, Brady TJ (1990) Functional cerebral imaging by susceptibility-contrast NMR. Magn Reson Med 14:538–546

    Google Scholar 

  11. Levin JM, Kaufman MJ, Ross MH, Mendelson JH, Maas LC, Cohen BM, Renshaw PF (1995) Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and hemodynamic perturbation. Magn Reson Med 34:655–663

    Google Scholar 

  12. Teicher MH, Anderson CM, Polcari A, Glod CA, Maas LC, Renshaw PF (2000) Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat Med 6:470–473

    Article  CAS  PubMed  Google Scholar 

  13. Pitkanen A, Laakso M, Kalviainen R, Partanen K, Vainio P, Lehtovirta M, Riekkinen P, Soininen H (1996) Severity of hippocampal atrophy correlates with the prolongation of MRI T2 relaxation time in temporal lobe epilepsy but not in Alzheimer’s disease. Neurology 46:1724–1730

    CAS  PubMed  Google Scholar 

  14. Chen JC, Hardy PA, Clauberg M, Joshi JG, Parravano J, Deck JH, Henkelman RM, Becker LE, Kucharczyk W (1989) T2 values in the human brain: comparison with quantitative assays of iron and ferritin. Radiology 173:521–526

    CAS  PubMed  Google Scholar 

  15. Chen JC, Hardy PA, Kucharczyk W, Clauberg M, Joshi JG, Vourlas A, Dhar M, Henkelman RM (1993) MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease. AJNR: Am J Neuroradiology 14:275–281

    Google Scholar 

  16. Grubb RL, Jr., Raichle ME, Eichling JO, Ter-Pogossian MM (1974) The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke 5:630–639

    PubMed  Google Scholar 

  17. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270

    Article  CAS  PubMed  Google Scholar 

  18. Jezzard P, Heineman F, Taylor J, DesPres D, Wen H, Balaban RS, Turner R (1994) Comparison of EPI gradient-echo contrast changes in cat brain caused by respiratory challenges with direct simultaneous evaluation of cerebral oxygenation via a cranial window. NMR Biomed 7:35–44

    CAS  PubMed  Google Scholar 

  19. Punwani S, Ordidge RJ, Cooper CE, Amess P, Clemence M (1998) MRI measurements of cerebral deoxyhaemoglobin concentration [dHb]–correlation with near infrared spectroscopy (NIRS). NMR Biomed 11:281–289

    CAS  PubMed  Google Scholar 

  20. Ulatowski JA, Oja JM, Suarez JI, Kauppinen RA, Traystman RJ, van Zijl PC (1999) In vivo determination of absolute cerebral blood volume using hemoglobin as a natural contrast agent: an MRI study using altered arterial carbon dioxide tension. J Cereb Blood Flow Metab 19:809–817

    Google Scholar 

  21. Anderson CM, Teicher MH, Polcari A, Renshaw PF (2002) Abnormal T2 relaxation time in the cerebellar vermis of adults sexually abused in childhood: potential role of the vermis in stress-enhanced risk for drug abuse. Psychoneuroendocrinology 27:231–244

    Google Scholar 

  22. Anderson CM, Polcari A, Lowen SB, Renshaw PF, Teicher MH (2002) Effects of methylphenidate on functional magnetic resonance relaxometry of the cerebellar vermis in boys with ADHD. Am J Psychiatry 159:1322–1328

    PubMed  Google Scholar 

  23. Silveri MM, Anderson CM, McNeil JF, Diaz CI, Lukas SE, Mendelsohn JH, Renshaw PF, Kaufman MJ (2004) Oral methylphenidate challenge selectively decreases putaminal T2 in healthy subjects. Drug Alcohol Depend 76:173–180

    CAS  PubMed  Google Scholar 

  24. Rohan ML, Eskesen JG, Anderson CM, Kaufman MJ, Renshaw PF (2004) TE stepping with EPI: reliable relaxometry ISMRM, Kyoto, JA 993

    Google Scholar 

  25. Maas LC, Frederick BD, Renshaw PF (1997) Decoupled automated rotational and translational registration for functional MRI time series data: the DART registration algorithm. Magn Reson Med 37:131–139

    Google Scholar 

  26. Duvernoy HM (1995) The human brain stem and cerebellum: surface, structure, vascularization, and three-dimensional sectional anatomy with MRI. Springer, Berlin Heidelberg New York

    Google Scholar 

  27. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  28. Kavec M, Usenius JP, Tuunanen PI, Rissanen A, Kauppinen RA (2004) Assessment of cerebral hemodynamics and oxygen extraction using dynamic susceptibility contrast and spin echo blood oxygenation level-dependent magnetic resonance imaging: applications to carotid stenosis patients. Neuroimage 22:258–267

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, C., Kaufman, M., Lowen, S. et al. Brain T2 relaxation times correlate with regional cerebral blood volume. MAGMA 18, 3–6 (2005). https://doi.org/10.1007/s10334-004-0076-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-004-0076-2

Keywords

Navigation