Skip to main content
Log in

23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

The mouse has become an important animal model for human cardiac disease, and the development of techniques for non-invasive imaging of the mouse heart in vivo is, therefore, of great potential interest. Previous magnetic resonance imaging studies have concentrated on pathologically induced changes in cardiac structure and dynamics by acquiring proton images. Further information can be gained by studying cardiac function and physiology using other nuclei, for example, sodium. Sodium imaging of such a small structure presents considerable technical challenges. In this work we show the first sodium images of the mouse heart, with an isotropic spatial resolution of 1 × 1 × 1 mm, acquired in a time of 1.5 h. The ventricles, septum and myocardium are readily distinguishable in these images, which were acquired through the combination of 3D density-weighted chemical shift imaging, optimized instrumentation, and a high magnetic field strength (17.6 T). Measurements of the myocardial:blood sodium concentration in the left and right ventricles agree well with theoretical values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruff J, Wiesmann F, Hiller KH, Voll S, von Kienlin M, Bauer WR, Rommel E, Neubauer S, Haase A (1998) Magnetic resonance micro imaging for non invasive quantification of myocardial function and mass in the mouse. Magn Reson Med 40(1):43–48

    CAS  PubMed  Google Scholar 

  2. Ruff J, Wiesmann F, Lanz T, Haase A (2000) Magnetic resonance imaging of coronary arteries and heart valves in a living mouse: techniques and preliminary results. J Magn Reson 146(2):290–296

    CAS  PubMed  Google Scholar 

  3. Cassidy PJ, Schneider JE, Grieve SM, Lygate C, Neubauer S, Clarke K (2004) Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J Magn Reson Imaging 19(2):229–237

    Article  PubMed  Google Scholar 

  4. Slawson SE, Roman BB, Williams DS, Koretsky AP (1998) Cardiac MRI of the normal and hypertrophied mouse heart. Magn Reson Med 39:980–987

    PubMed  CAS  Google Scholar 

  5. Wiesmann F, Ruff J, Hiller KH, Rommel E, Haase A, Neubauer S (2000) Developmental changes of cardiac function and mass assessed with MRI in neonatal, juvenile, and adult mice. Am J Physiol Heart Circ Physiol 278(2):H652–H657

    CAS  PubMed  Google Scholar 

  6. Chacko VP, Aresta F, Chacko SM, Weiss RG (2000) MRI/MRS assessment of in vivo murine cardiac metabolism, morphology, and function at physiological heart rates. Am J Physiol Heart Circ Physiol 279:H2218–H2224

    CAS  PubMed  Google Scholar 

  7. Wiesmann F, Ruff J, Engelhardt S, Hein L, Dienesch C, Leupold A, Illinger R, Frydrychowicz A, Hiller KH, Rommel E, Haase A, Lohse MJ, Neubauer S (2001) Dobutamine-stress magnetic resonance microimaging in mice: acute changes of cardiac geometry and function in normal and failing murine hearts. Circ Res 30;88(6):563–569

  8. Yang Z, French BA, Gilson WD, Ross AJ, Oshinski JN, Berr SS (2001) Cine magnetic resonance imaging of myocardial ischemia and reperfusion in mice. Circulation 103:E84

    PubMed  CAS  Google Scholar 

  9. Kim RJ, Lima JA, Chen EL, Reeder SB, Klocke FJ, Zerhouni EA, Judd RM (1997) Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation 95(7):1877–1885

    PubMed  CAS  Google Scholar 

  10. Pabst T, Sandstede J, Beer M, Kenn W, Greiser A, von Kienlin M, Neubauer S, Hahn D (2001) Optimization of ECG-triggered 3D (23)Na MRI of the human heart. Magn Reson Med 45(1):164–166

    Article  CAS  PubMed  Google Scholar 

  11. Sandstede JJW, Pabst T, Beer M, et al. (2001) 23Na magnetic resonance imaging for the assessment of myocardial infarction in humans - comparison with cine MRI and delayed contrast enhancement. Radiology 221:222–228

    CAS  PubMed  Google Scholar 

  12. Kim RJ, Judd RM, Chen EL, Fieno DS, Parrish TB, Lima JA (1999) Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation 100(2):185–192

    PubMed  CAS  Google Scholar 

  13. Constantinides CD, Kraitchman DL, O’Brien KO, Boada FE, Gillen J, Bottomley PA (2001) Noninvasive quantification of total sodium concentrations in acute reperfused myocardial infarction using 23Na MRI. Magn Reson Med 46(6):1144–1151

    Article  CAS  PubMed  Google Scholar 

  14. Weidensteiner C, Horn M, Fekete E, Neubauer S, von Kienlin M (2002) Imaging of intracellular sodium with shift reagent aided (23)Na CSI in isolated rat hearts. Magn Reson Med 48(1):89–96

    PubMed  CAS  Google Scholar 

  15. Gravina S, Cory DG (1994) Sensitivity and resolution of constant-time imaging. J Magn Reson B 104:53–61

    CAS  Google Scholar 

  16. Balcom BJ, Macgregor RP, Beyea SD, Green DP, Armstrong RL, Bremner TW (1996) Single-point ramped imaging with T1 enhancement (SPRITE). J Magn Reson A 123(1):131–134

    PubMed  CAS  Google Scholar 

  17. Boada FE, Shen GX, Chang SY, Thulborn KR (1997) Spectrally weighted twisted projection imaging: reducing T2 signal attenuation effects in fast three-dimensional sodium imaging. Magn Reson Med 38(6):1022–1028

    PubMed  CAS  Google Scholar 

  18. Boada FE, Gillen JS, Shen GX, Chang SY, Thulborn KR (1997) Fast three dimensional sodium imaging. Magn Reson Med 37(5):706–715

    PubMed  CAS  Google Scholar 

  19. Brown TR, Kincaid BM, Ugurbil K (1982) NMR chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79(11):3523–3526

    CAS  PubMed  Google Scholar 

  20. Brooker HR, Mareci TH, Mao JT (1987) Selective Fourier transform localization. Magn Reson Med 5:417–433

    PubMed  CAS  Google Scholar 

  21. Mareci TH, Brooker HR (1991) Essential considerations for spectral localization using indirect gradient encoding of spatial information. J Magn Reson 92:229–246

    Google Scholar 

  22. Webb AG, Briggs RW, Mareci TH (1991) Volume localized spectroscopy using the selective Fourier transform with windowing by variable tip angle excitation. J Magn Reson 94:174–179

    Article  CAS  Google Scholar 

  23. Webb AG, Mareci TH, Briggs RW (1994) Relative efficiencies of phase encoded localized NMR methods. J Magn Reson Ser B 103:274–277

    CAS  Google Scholar 

  24. Greiser A, von Kienlin M (2003) Efficient k-space sampling by density-weighted phase-encoding. Magn Reson Med 50(6):1266–1275

    PubMed  Google Scholar 

  25. Frahm J, Haase A, Matthaei D (1986) Rapid NMR imaging of dynamic processes using the FLASH technique. Magn Reson Med 3:321–327

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments.

We would like to thank Sebastian Aussenhofer for technical support and work with AMIRA. The 17.6 T spectrometer was funded by the Deutsche Forschungsgemeinschaft (Ha1232/13). TN and AGW acknowledge financial support from the Alexander von Humboldt Foundation, Wolfgang Paul Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Neuberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuberger, T., Greiser, A., Nahrendorf, M. et al. 23Na microscopy of the mouse heart in vivo using density-weighted chemical shift imaging. MAGMA 17, 196–200 (2004). https://doi.org/10.1007/s10334-004-0048-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-004-0048-6

Keywords

Navigation