Skip to main content

Advertisement

Log in

Inferring Pongo conservation units: a perspective based on microsatellite and mitochondrial DNA analyses

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

In order to define evolutionarily significant and management units (ESUs and MUs) among subpopulations of Sumatran (Pongo pygmaeus abelii) and Bornean (P. p. pygmaeus) orangutans we determined their genetic relationships. We analyzed partial sequences of four mitochondrial genes and nine autosomal microsatellite loci of 70 orangutans to test two hypotheses regarding the population structure within Borneo and the genetic distinction between Bornean and Sumatran orangutans. Our data show Bornean orangutans consist of two genetic clusters—the western and eastern clades. Each taxon exhibits relatively distinct mtDNA and nuclear genetic distributions that are likely attributable to genetic drift. These groups, however, do not warrant designations as separate conservation MUs because they demonstrate no demographic independence and only moderate genetic differentiation. Our findings also indicate relatively high levels of overall genetic diversity within Borneo, suggesting that observed habitat fragmentation and erosion during the last three decades had limited influence on genetic variability. Because the mtDNA of Bornean and Sumatran orangutans are not strictly reciprocally monophyletic, we recommend treating these populations as separate MUs and discontinuing inter-island translocation of animals unless absolutely necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker AJ, Daugherty CH, Colbourne R, McLennan JL (1995) Flightless brown kiwi of New Zealand possess extremely subdivided population structure and cryptic species like small mammals. PNAS 92:8254–8258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Castelloe J, Templeton AR (1994) Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phyl Evol 3:102–113

    Article  CAS  Google Scholar 

  • Collura RV, Stewart C (1995) Insertions and duplications of mtDNA in the nuclear genomes of Old World monkeys and hominoids. Nature 378:485–489

    Article  CAS  PubMed  Google Scholar 

  • Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crandall KA, Bininda-Evans ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies with a molecular clock. Syst Zool, 34:152–161

    Article  Google Scholar 

  • Felsenstein J (2004) PHYLIP (phylogenetic inference package) version 3.6. Distributed by author. University of Washington, Seattle

  • Forster P (2004) NETWORK version 4.1.0.6. Distributed by Fluxus Technology.

  • Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for identifying conservation units. Mol Ecol 10:2741–2752

    Article  CAS  PubMed  Google Scholar 

  • Groves CP, Westwood C, Shea BT (1992) Unfinished business: Mahalanobis and a clockwork orang. J Human Evol 22:327–340

    Article  Google Scholar 

  • Hanski I, Gilpin M (1991) Metapopulation dynamics: brief history and conceptual domain. Biol J Linn Soc 42:3–16

    Article  Google Scholar 

  • Hartl DL, Clark AG (1989) Principles of population genetics, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  • Hedrick PW (1995) Gene flow and genetic restoration: the Florida panther as a case study. Cons Biol 9:996–1007

    Article  Google Scholar 

  • Janczewski DN (1989) Estimate of genetic distance of orang utan (Pongo pygmaeus) subspecies based on isozyme and two-dimensional gel electrophoresis. PhD thesis, George Mason University

  • Janczewski DN, Goldman D, O’Brien SJ (1990) Molecular genetic divergence of orang-utan (Pongo pygmaeus) subspecies based on isozyme and two dimensional gel electrophoresis. Heredity 81:375–397

    CAS  Google Scholar 

  • Kanthaswamy S, Smith DG (2002) Population subdivision and gene flow among wild orangutans. Primates 43:315–327

    Article  PubMed  Google Scholar 

  • Kanthaswamy S, Bininda-Emonds ORP, Warden C, Viray JL, Smith DG (2001) Use of SSR fragment length homozygotes for orangutan systematics. Primates 42:35–45

    Article  Google Scholar 

  • Kawamoto Y, Ischak TM, Supriatna J (1984) Genetic variations within and between troops of the crab-eating macaque (Macaca fascicularis) on Sumatra, Java, Bali, Lambok and Sumbawa, Indonesia. Primates 25:131–159

    Article  Google Scholar 

  • Kimura M, Crow J (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV Päabo S, Fillablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Evolution 86:6196–6200

    CAS  Google Scholar 

  • Lacy RC (1987) Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Cons Biol 1:143–158

    Article  Google Scholar 

  • Lande R, Barrowclough GF (1987) Effective population size, genetic variation and their use in population management. In: Soule ME (ed) Variable populations for conservation. Cambridge University Press, New York pp 87–123

    Chapter  Google Scholar 

  • Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629

    Article  Google Scholar 

  • Lyons-Weiler J, Hoelzer GA, Taush RJ (1998) Optimal outgroup analysis. Biol J Linn Soc 64:4933–5011

    Article  Google Scholar 

  • Melnick DJ, Hoelzer GA (1992) Differences in male and female macaque dispersal lead to contrasting distributions of nuclear and mitochondrial DNA variation. Int J Primatol 13:379–393

    Article  Google Scholar 

  • Moritz C (1994) Applications defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 3:401–412

    CAS  Google Scholar 

  • Moritz C (1995) Use of molecular phylogenies for conservation. In: Harvey PL et al (eds) New uses for new phylogenies. Phil Trans R Soc Lond B 349:113–118

    Article  Google Scholar 

  • Muir CC, Galdikas BMF, Beckenbach AT (2000) mtDNA sequence diversity of orangutans from the islands of Borneo and Sumatra. J Mol Evol 51:471–480

    CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • O’Brien SJ, Mayr E (1991) Bureaucratic mischief: recognizing endangered species and subspecies. Science 251:1187–1188

    Article  PubMed  Google Scholar 

  • Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res 22: 201–204

    Article  CAS  PubMed  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Compt Appl Biosci 12:357–358

    CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) GenePop (version 1.2). Population genetics software for exact tests and ecumenicism. Heredity 86:248–249

    Google Scholar 

  • Schneider S, Roessli D, Excofflier L (2000) ARLEQUIN 2.0: a software for population genetic data analysis. Laboratory of Genetics and Biometry, University of Geneva, Switzerland

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei MT (1993) Estimation of the number of nucleotide substitutions in the control region of the mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Templeton AR (1986) Coadaptation and inbreeding depression. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 105–116

    Google Scholar 

  • Templeton AR, Read B (1984) Factor eliminating inbreeding deprivation in a captive herd of Speke’s gazelles. Zoo Biol 3:177–199

    Article  Google Scholar 

  • Tiedemann R, Hardy O, Vekemans X, Milinkovitch MC (2000) Higher impact of female than male migration on population structure in large mammals. Mol Ecol 9:1159–1163

    Article  CAS  PubMed  Google Scholar 

  • Toonen RJ, Hughes S (2001) Increased throughput for fragment analysis on an ABI Prizm® 377 automated sequencer using a membrane comb and STRand software. Biotechniques 31:1320–1324

    CAS  PubMed  Google Scholar 

  • Tosi AJ, Morales JC, Melnick DJ (2000) Comparison of Y chromosome and mtDNA phylogenies leads to unique inferences of macaque evolutionary history. Mol Phyl Evol 17:133–144

    Article  CAS  Google Scholar 

  • Uchida A (1998) Variation in tooth morphology of Pongo pygmaeus. J Human Evol 34:71–79

    Article  CAS  Google Scholar 

  • Vrijenhoek RC (1994) Genetic diversity and fitness in small populations. In: Loeschke V, Tomiuk J, Jaih SK (eds) Conservation genetics. Birkhäuser, Basel, pp 37–53

    Chapter  Google Scholar 

  • Waples RS, Gustafson RG, Weitkamp LA, Myers JM, Johnson OW, Busby PJ, Hard JJ, Bryant GJ, Waknitz FW, Neely K, Teel D, Grant WS, Winans GA, Phelps S, Marshall A, Baker BM (2001) Characterizing diversity in salmon from the Pacific Northwest. J Fish Biol 59:1–41

    Google Scholar 

  • Warren KS, Nijman IJ, Lenstra JA, Swan RA, Heriyanto Den Boer MH (2000) Microsatellite DNA variation in Bornean orang-utans. J Med Primatol 29:57–62

    Article  CAS  PubMed  Google Scholar 

  • Warren KS, Verschoor EJ, Langenhuijzen S, Heriyanto, Swan RA, Vigilant L, Heeney J (2001) Speciation and intrasubspecific variation of Bornean Orangutans, Pongo pygmaeus pygmaeus. Mol Biol Evol 18:472–480

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1977) Evolution and genetics of populations. Chicago University Press, Chicago

    Google Scholar 

  • Xu X, Arnason U (1996) The mitochondrial DNA molecule of Sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of orangutan. J Mol Evol 43:431–437

    Article  CAS  PubMed  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

  • Zhi L, Karesh WB, Janczewski DN, Frazier-Taylor H, Sajuthi D, Gombek F, Andau M, Martenson JS, O’Brien SJ (1996) Genomic differentiation among natural populations of oran-utan (Pongo pygmaeus). Curr Biol 6:1326–1336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research allocations (awarded to S.K.) from the Sarawak State Government, Malaysia, the California National Primate Research Center and the Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, for primate population genetics research. The authors also wish to thank Andrea Von Dollen and Ona Alminas for their technical assistance, and Meagan Sutherland and Clint Pells for their aid in this manuscript. We are grateful to Professor Balbir Singh, a faculty of Medicine and Health Sciences Department, Universiti Malaysia Sarawak for his laboratory space for microsatellite and sequencing analyses and the State Government of Sarawak and Federal Government, Malaysia for permitting the sampling of the Sarawak animals. We thank the following facilities for providing us with samples ex gratia: Stephen J. O’Brien Laboratory, Laboratory of Genomic Diversity, National Cancer Institute at Frederick Cancer Research and Development, Frederick, MD; Audubon Zoo, New Orleans, LA; Birmingham Zoo, Alabama Zoological Society, Birmingham, AL; Cheyenne Mountain Zoo, Colorado Springs, CO; Brookfield Zoo, Chicago Zoological Society, Brookfield, IL; Marine World USA, Vallejo, CA; Miami Metro Zoo, Miami, FL; San Francisco Zoological Garden, San Francisco, CA; St. Louis Zoo, St. Louis, MO; Woodland Park Zoological Gardens, Seattle WA; Yerkes Primate Center, Emory University, Atlanta, GA; Center for Reproduction of Endangered Species (CRES), San Diego Zoo, San Diego, CA; Memphis Zoo, Memphis, TN; Little Rock Zoo, Little Rock, AR; Ft. Wayne Children’s Zoo, Ft. Wayne, IN; Oregon Zoo, Portland, OR; and the Orangutan Species Survival Plan coordinator, Lori Perkins. Finally, we would like to thank the anonymous reviewers for their helpful comments in editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreetharan Kanthaswamy.

About this article

Cite this article

Kanthaswamy, S., Kurushima, J.D. & Smith, D.G. Inferring Pongo conservation units: a perspective based on microsatellite and mitochondrial DNA analyses. Primates 47, 310–321 (2006). https://doi.org/10.1007/s10329-006-0191-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-006-0191-y

Keywords

Navigation