Skip to main content
Log in

Postglacial population expansion of Japanese macaques (Macaca fuscata) inferred from mitochondrial DNA phylogeography

  • Original Article
  • Published:
Primates Aims and scope Submit manuscript

Abstract

We investigated the diversity and phylogeography of mitochondrial DNA (mtDNA) in Japanese macaques (Macaca fuscata), an endemic species in Japan that has the northernmost distribution of any non-human primate species. DNA samples from 135 localities representing the entire range of this species were compared. A total of 53 unique haplotypes were observed for the 412-bp partial mtDNA control region sequence, with length variation distinguishing the two subspecies. Clustering analyses suggested two putative major haplogroups, of which one was geographically distributed in eastern Japan and the other in western Japan. The populations in the east showed lower mtDNA diversity than those in the west. Phylogeographical relationships of haplotypes depicted with minimum spanning network suggested differences in population structure. Population expansion was significant for the eastern but not the western population, suggesting establishment of the ancestral population was relatively long ago in the west and recent in the east. Based on fossil evidence and past climate and vegetation changes, we inferred that the postulated population expansion may have taken place after the last glacial period (after 15,000 years ago). Mitochondrial DNA showed contrasting results in both variability and phylogenetic status of local populations to those of previous studies using protein variations, particularly for populations in the periphery of the range, with special inference on habitat change during the glacial period in response to cold adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aimi M (2002) The oldest fossil macaque from Japan (in Japanese with English summary). Primate Res 18:239–245

    Article  Google Scholar 

  • Brown WM, George Jr M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clifford SL, Anthony NM, Bawe-Johnson M, Abernethy KA, Tutin CEG, White LJT, Bermejo M, Goldsmith ML, McFarland K, Jeffery KJ, Bruford MW, Wickings J (2004) Mitochondrial DNA phylogeography of western lowland gorillas (Gorilla gorilla gorilla). Mol Ecol 13:1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Evans BJ, Supriatna J, Andayani N, Melnick DJ (2003) Diversification of Sulawesi macaque monkeys: decoupled evolution of mitochondrial and autosomal DNA. Evolution 57:1931–1946

    Article  PubMed  Google Scholar 

  • Fooden J, Aimi M (2005) Systematic review of Japanese macaques, Macaca fuscata (Gray, 1870). Fieldiana: Zoology New Series 104

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Furuya Y (1969) On the fission of troops of Japanese monkeys II. General view of troop fission of Japanese monkeys. Primates 10:47–69

    Article  Google Scholar 

  • Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77:6715–6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg TL, Ruvolo M (1997) The geographic apportionment of mitochondrial genetic diversity in east African chimpanzees, Pan troglodytes schweinfurthii. Mol Biol Evol 14:976–984

    Article  CAS  PubMed  Google Scholar 

  • Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    CAS  PubMed  Google Scholar 

  • Hasegawa Y, Tomida Y, Kohno N, Ono K, Nokariya H, Uyeno T (1988) Quaternary vertebrates from Shiriya Area, Shimokita Peninsula, Northeastern Japan (in Japanese with English summary). Mem Natl Sci Mus 21:17–33

    Google Scholar 

  • Hayaishi S, Kawamoto Y (2006) Low genetic diversity and biased distribution of mitochondrial DNA haplotypes in the Japanese macaque (Macaca fuscata yakui) on Yakushima Island. Primates 47:158–164

    Article  PubMed  Google Scholar 

  • Hayasaka K, Kawamoto Y, Shotake T, Nozawa K (1987) Population genetical study of Japanese macaques, Macaca fuscata, in the Shimokita A1 troop, with special reference to genetic variability and relationships to Japanese macaques in other troops. Primates 28:507–516

    Article  Google Scholar 

  • Hayasaka K, Ishida T, Horai S (1991) Heteroplasmy and polymorphism in the major noncoding region of mitochondrial DNA in Japanese monkeys: association with tandemly repeated sequences. Mol Biol Evol 8:399–415

    CAS  PubMed  Google Scholar 

  • Hayasaka K, Fujii K, Horai S (1996) Molecular phylogeny of macaques: implications of nucleotide sequences from an 896-base pair region of mitochondrial DNA. Mol Biol Evol 13:1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hutchison CA, Newbold CE, Potter SS, Edgell MH (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251:536–538

    Article  CAS  PubMed  Google Scholar 

  • Itani J (1954) The monkeys of Takasakiyama. In: Imanishi K (ed) Nihon Dobutsuki, II. Kobunsha, Tokyo (in Japanese)

  • Iwamoto M, Hasegawa Y (1972) Two macaque fossil teeth from the Japanese Pleistocene. Primates 13:77–81

    Article  Google Scholar 

  • Izumiyama S, Mochizuki T, Shiraishi T (2003) Troop size, home range area and seasonal range use of the Japanese macaque in the Northern Japan Alps. Ecol Res 18:465–474

    Article  Google Scholar 

  • Jensen-Seaman MI, Kidd KK (2001) Mitochondrial DNA variation and biogeography of eastern gorillas. Mol Ecol 10:2241–2247

    Article  CAS  PubMed  Google Scholar 

  • Kamei T, Kawamura Y, Taruno H (1988) Mammalian stratigraphy of the Late Neogene and Quaternary in the Japanese Islands (in Japanese with English summary). Mem Geol Soc Jpn 30:181–204

    Google Scholar 

  • Kawamoto Y (1997) Genetic monitoring of the local population of the Japanese macaque using mitochondrial DNA variations (in Japanese). Wildlife Forum 3:31–38

    Google Scholar 

  • Kawamura Y, Kamei T, Taruno H (1989) Middle and late Pleistocene mammalian fauna in Japan (in Japanese with English summary). Quat Res 28:317–326

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kira T, Shidei T, Numata M, Yoda K (1976) Natural vegetation in Japan (in Japanese). Kagaku 46:235–247

    Google Scholar 

  • Koyama N (1970) Changes in dominance rank and division of a wild Japanese monkey troop in Arashiyama. Primates 11:335–390

    Article  Google Scholar 

  • Kuroda N (1940) A Monograph of the Japanese mammals exclusive of Sirenia and Cetacea. Sanseido, Tokyo, 311 pp (in Japanese)

  • Marmi J, Bertranspetit Terradas J, Takenaka O, Domingo-Roura X (2004) Radiation and phylogeography in the Japanese macaques, Macaca fuscata. Mol Phylogenet Evol 30:676–685

    Article  CAS  PubMed  Google Scholar 

  • Melnick DJ, Hoelzer GA, Honeycutt RL (1992) Mitochondrial DNA: its uses in anthropological research. In: Devor EJ (eds) Molecular applications in biological Anthropology. Cambridge University Press, Cambridge, pp 179–233

    Google Scholar 

  • Melnick DJ, Hoelzer GA (1996) The population genetic consequences of macaque social organization and behaviour. In: Fa JE, Lindburg DG (eds) Evolution and ecology of macaque societies. Cambridge University Press, Cambridge, pp 413–443

    Google Scholar 

  • Ministry of the Environment, Japan (2002) Threatened Wildlife of Japan—Red Data Book, 2nd edn, vol 1, Mammalia, 177 pp (in Japanese)

  • Ministry of the Environment, Japan (2004) The National Survey on the Natural Environment: Report of the distributional survey of Japanese animals (Mammals), 213 pp (in Japanese)

  • Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 100:171–176

    Article  CAS  PubMed  Google Scholar 

  • Mito Y (1992) Why is Japanese monkey distribution so limited in the northern Tohoku area? (in Japanese). Seibutsu Kagaku 44:141–158

    Google Scholar 

  • Mouri T, Agatsuma T, Iwagami M, Kawamoto Y (2000) Species identification by mitochondrial DNA: a case study of macaque remains from Shuri castle, Okinawa (in Japanese with English summary). Primate Res 16:87–94

    Article  Google Scholar 

  • Morin PA, Moore JJ, Chakraborty R, Jin L, Goodall J, Woodruff DS (1994) Kin selection, social structure, gene flow, and the evolution of chimpanzees. Science 265:1193–1201

    Article  CAS  PubMed  Google Scholar 

  • Nagata J (2005) Phylogeographic history of the Japanese sika deer engraved on DNA. In: Masuda R, Abe H (eds) Zoogeography and natural history of animals: evolutionary of distribution and diversity. Hokkaido University Press, Sapporo, pp 32–44 (in Japanese)

  • Nagata J, Masuda R, Tamate HB, Hamasaki S, Ochiai K, Asada M, Tatsuzawa S, Suda K, Tado H, Yoshida MC (1999) Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: Comparison of mitochondrial D-loop region sequences. Mol Phylogenet Evol 13:511–519

    Article  CAS  PubMed  Google Scholar 

  • Nakamura J (1952) A comparative study of Japanese pollen records. Res Rep Kochi Univ 1:1–20

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nozawa K, Shotake T, Minezawa M, Kawamoto Y, Hayasaka K, Kawamoto S (1996) Population genetic studies of the Japanese macaque, Macaca fuscata. In: Shotake T, Wada K (eds) Variations in the Asian Macaques. Tokai University Press, Tokyo, pp 1–36

    Google Scholar 

  • Nozawa K, Shotake T, Minezawa M, Kawamoto Y, Hayasaka K, Kawamoto S, Ito SI (1991) Population genetics of Japanese monkeys: III. Ancestry and differentiation of local populations. Primates 32:411–435

    Article  Google Scholar 

  • Ono Y (1984) Last glacial paleoclimate reconstructed from glacial and periglacial landforms in Japan. Geogr Rev Jpn Ser B 57:87–100

    Article  Google Scholar 

  • Ono Y (1988) Last glacial snowline altitude and palaeoclimate of the Eastern Asia (in Japanese with English summary). Quat Res 26:271–280

    Article  Google Scholar 

  • Ono Y, Naruse T (1997) Snowline elevation and eolian dust flux in the Japanese islands during isotope stages 2 and 4. Quat Int 37:45–54

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Rogers AR, Haprending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Evol Biol 9:552–569

    CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messegyer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method; a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rate vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DG, McDonough J (2005) Mitochondrial DNA variation in Chinese and Indian rhesus macaques (Macaca mulatta). Am J Primatol 65:1–25

    Article  CAS  PubMed  Google Scholar 

  • Sohma K, Tsuji S (1988) Quaternary flora of Japan. Quat Res 26:281–291

    Article  Google Scholar 

  • Suzuki H (1962) Southern limit of peri-glacial landforms at low level and the climatic classification of the latest ice age in Japan (in Japanese with English summary). Geogr Rev Jpn 35:67–76

    Article  Google Scholar 

  • Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods), Version 4. Sinauer, Sunderland

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahara H, Sugita S, Harrison SP, Miyoshi N, Morita Y, Uchiyama T (2000) Pollen-based reconstructions of Japanese biomes at 0,6000 and 18,000 14C yr BP. J Biogeogr 27:665–683

    Article  Google Scholar 

  • Tamate HB, Tatsuzawa S, Suda K, Izawa M, Doi T, Sunagawa K, Miyahira F, Tado H (1998) Mitochondrial DNA variations in local populations of the Japanese sika deer, Cervus nippon. J Mammal 79:1396–1403

    Article  Google Scholar 

  • Tomaru N, Mitutsuji T, Takahashi M, Tsumura Y, Uchida K, Ohba K (1997) Genetic diversity in Fagus crenata (Japanese beech): influence of the distributional shift during the late-Quaternary. Heredity 78:241–251

    Article  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tomaru N, Takahashi M, Tsumura Y, Takahashi M, Ohba K (1998) Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. Am J Bot 85:629–636

    Article  CAS  PubMed  Google Scholar 

  • Tosi AJ, Morales JC, Melnick DJ (2002) Y-choromosome and mitochondrial markers in Macaca fascicularis indicate introgression with Indochinese M. mulatta and a biogeographic barrier in the Isthmus of Kra. Int J Primatol 23:161–178

    Article  Google Scholar 

  • Tosi AJ, Morales JC, Melnick DJ (2003) Paternal, maternal, and biparental molecular markers provide unique windows onto the evolutionary history of macaque monkeys. Evolution 57:1419–1435

    Article  CAS  PubMed  Google Scholar 

  • Tsuchiya K, Suzuki H, Shinohara A, Harada M, Wakana S, Sakaizumi M, Han S-H, Lin L-K, Kryukov AP (2000) Molecular phylogeny of east Asian moles inferred from the sequence variation of the mitochondrial cytochrome b gene. Genes Genet Syst 75:17–24

    Article  CAS  PubMed  Google Scholar 

  • Tsukada M (1974) Paleoecology II. Synthesis. Kyoritsu Shuppan, Tokyo (in Japanese)

  • Tsukada M (1982a) Late-Quaternary shift of Fagus distribution. Bot Mag Tokyo 95:203–217

    Article  Google Scholar 

  • Tsukada M (1982b) Late-Quaternary development of the Fagus forest in the Japanese Archipelago. Jpn J Ecol 32:113–118

    Google Scholar 

  • Tsukada M (1982c) Cryptomeria japonica: glacial refugia and late-glacial and postglacial migration. Ecology 63:1091–1105

    Article  Google Scholar 

  • Tsukada M (1985) Map of vegetation during the last glacial maximum in Japan. Quat Res 23:369–381

    Article  Google Scholar 

  • Tsukada M (1986a) Vegetation in prehistoric Japan: the last 20,000 years. In: Pearson RJ (ed) Windows on the Japanese past: studies in archaeology and prehistory. Center for Japanese Studies, the University of Michigan, Ann Arbor, pp 11–56

    Google Scholar 

  • Tsukada M (1986b) Altitudinal and latitudinal migration of Cryptomeria japonica for the past 20,000 years in Japan. Quat Res 26:135–152

    Article  Google Scholar 

  • Uehara S (1975) The importance of the temperate forest elements among woody food plants utilized by Japanese monkeys and its possible historical meaning for the establishment of the monkeys’ range. A preliminary report. In: Contemporary Primatology Fifth International Congress of Primatology, Nagoya 1974, Karger, Basel, pp 392–400

  • Yamagiwa J, Hill DA (1998) Intraspecific variation in the social organization of Japanese macaques: past and present scope of field studies in natural habitats. Primates 39:257–273

    Article  Google Scholar 

  • Yamanaka M (1965) Pollen profiles of recent sediments from the Tashiro moor, Hakkoda Mountains. Ecol Rev 16:195–199

    Google Scholar 

  • Yoshimi I, Takasaki H (2003) Long distance mobility of male Japanese macaques evidenced by mitochondrial DNA. Primates 44:71–74

    PubMed  Google Scholar 

  • Yoshioka K (1973) Plant geography. Kyoritsu Shuppan, Tokyo (in Japanese)

Download references

Acknowledgments

We are indebted to the field biologists working on Japanese macaques listed in the Appendix for collection of samples. We also thank the prefectural authorities for permits to research and capture macaques. This study was financed by the Ministry of Education, Culture, Sports, Science and Technology, Japan (Grants-in-Aid for General Scientific Research Nos. 09640835 and 11440249) and Forestry and Forest Products Research Institute, Japan. We conducted part of the field investigations for this study through cooperative research programs of the Primate Research Institute, Kyoto University. We wish to thank Dr. O. Takenaka, Dr. N. Shigehara, Dr. M. Aimi, Dr. T Mouri, Mr. Y Mito, Dr. E. Kitahara, Dr. S. Miura and Dr. J. Fooden for their cooperation and encouragement in studying wild populations of Japanese macaques and Dr. H. Tanaka for support in data analysis. We are grateful to Dr. D.G. Smith and two anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshi Kawamoto.

Electronic supplementary material

Appendix

Appendix

Table 3 List of study sites and mtDNA haplotypes. Locality no. indicates the site in Fig. 1. Sample no. is the code of sample banked at Population Genetics Section of the Primate Research Institute, Kyoto University

About this article

Cite this article

Kawamoto, Y., Shotake, T., Nozawa, K. et al. Postglacial population expansion of Japanese macaques (Macaca fuscata) inferred from mitochondrial DNA phylogeography. Primates 48, 27–40 (2007). https://doi.org/10.1007/s10329-006-0013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10329-006-0013-2

Keywords

Navigation