Skip to main content
Log in

Stress response regulator FoSkn7 participates in the pathogenicity of Fusariumoxysporum f. spcubense race 4 by conferring resistance to exogenous oxidative stress

  • Fungal Diseases
  • Published:
Journal of General Plant Pathology Aims and scope Submit manuscript

Abstract

An ortholog of the response regulator protein Skn7 in Fusariumoxysporum f. sp. cubense race 4 (Foc4) was identified here and named FoSkn7. Mutants lacking FoSkn7 displayed higher sensitivity than the wild-type strain to oxidative stress. In addition, the FoSkn7-deletion mutant caused an oxidative burst in banana seedlings at early stages of infection and had reduced virulence on Giant Cavendish bananas (Musa spp.). These results showed that FoSkn7 confers resistance to exogenous oxidative stress. To understand the underlying mechanism of this resistance to exogenous oxidative stress, we used RNA-seq to identify genes that are differentially regulated between the FoSkn7-deletion mutant and the wild-type strain. Among 104 upregulated and 566 downregulated genes with a two-fold change cutoff, 26 downregulated genes were related to stimulus response and antioxidant activity. KEGG enrichment analysis showed that 150 differentially expressed genes were enriched in 67 metabolic pathways, mainly including ribosomes, ribosome biogenesis in eukaryotes, RNA polymerase, peroxisome, glutamate metabolism, fatty acid degradation, and protein processing in the endoplasmic reticulum. These results suggest that FoSkn7, as an important stress response regulator of Foc4, confers resistance to exogenous oxidative stress by regulating the expression of several stress-response- and antioxidant-related genes and metabolic pathways to promote the virulence of Foc4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brown JL, North S, Bussey H (1993) SKN7, a yeast multicopy suppressor of a mutation affecting cell wall beta-glucan assembly, encodes a product with domains homologous to prokaryotic two-component regulators and to heat shock transcription factors. J Bacteriol 175:6908–6915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JL, Bussey H, Stewart RC (1994) Yeast Skn7p functions in a eukaryotic two-component regulatory pathway. EMBO J 13:5186–5194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao C, Liu W, Li R (2009) Penicillium marneffei SKN7, a novel gene, could complement the hypersensitivity of S. cerevisiae  skn7 disruptant strain to oxidative stress. Mycopathologia 168:23–30

    Article  CAS  PubMed  Google Scholar 

  • Chen LH, Lin CH, Chung KR (2012) Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. Fungal Genet Biol 49:802–813

    Article  CAS  PubMed  Google Scholar 

  • Coenjaerts FE, Hoepelman AI, Scharringa J, Aarts M, Ellerbroek PM, Bevaart L, Van Strijp JA, Janbon G (2006) The Skn7 response regulator of Cryptococcus  neoformansis involved in oxidative stress signalling and augments intracellular survival in endothelium. FEMS Yeast Res 6:652–661

    Article  CAS  PubMed  Google Scholar 

  • Cuellar-Cruz M, Briones-Martin-del-Campo M, Cañas-Villamar I, Montalvo-Arredondo L, Riego-Ruiz IC, De Las Peñas A (2008) High resistance to oxidative stress in the fungal pathogen Candida  glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 7:814–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fassler JS, West AH (2011) Fungal Skn7 stress responses and their relationship to virulence. Eukaryot Cell 10:156–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gawel NJ, Jarret RL (1991) A modified CTAB DNA extraction procedure for Musa and Ipomoea. Mol Biol Rep 9:262–266

    Article  CAS  Google Scholar 

  • Geisbrecht BV, Zhu D, Gould SJ (1998) Molecular characterization of Saccharomyces  cerevisiae Δ3, Δ2-enoyl-CoA isomerase. J Biol Chem 273:33184–33191

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo M, Guo W, Chen Y, Dong SM, Zhang X, Zhang HF (2010) The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe  oryzae. Mol Plant-Microbe Interact 23:1053–1068

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Chen Y, Du Y, Dong YH, Guo W, Zhai S (2011) The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe  oryzae. PLoS Pathog 7:e1001302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagiwara D, Asano Y, Marui J, Furukawa K, Kanamaru K (2007) The SskA and SrrA response regulators are implicated in oxidative stress responses of hyphae and asexual spores in the phosphorelay signaling network of Aspergillus  nidulans. Biosci Biotechnol Biochem 71:1003–1014

    Article  CAS  PubMed  Google Scholar 

  • He XJ, Fassler JS (2005) Identification of novel Yap1p and Skn7p binding sites involved in the oxidative stress response of Saccharomyces  cerevisiae. Mol Microbiol 58:1454–1467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumitsu K, Yoshimi A, Tanaka C (2007) Two-component response regulators Ssk1p and Skn7p additively regulate high-osmolarity adaptation and fungicide sensitivity in Cochliobolus  heterostrophus. Eukaryot Cell 6:171–181

    Article  CAS  PubMed  Google Scholar 

  • Izumitsu K, Yoshimi A, Hamada S, Morita A, Saitoh Y, Tanaka C (2009) Dic2 and Dic3 loci confer osmotic adaptation and fungicidal sensitivity independent of the HOG pathway in Cochliobolus  heterostrophus. Mycol Res 113:1208–1215

    Article  CAS  PubMed  Google Scholar 

  • Kalmar B, Greensmith L (2009) Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev 61:310–318

    Article  CAS  PubMed  Google Scholar 

  • Kenneth JL, Thomas DS (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Krems B, Charizanis C, Entian KD (1996) The response regulator-like protein Pos9/Skn7 of Saccharomyces  cerevisiae is involved in oxidative stress resistance. Curr Genet 29:327–334

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H (2007) ClustalW and ClustalX version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Godon C, Lagniel G, Spector D, Toledano MB (1999) Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274:16040–16046

    Article  CAS  PubMed  Google Scholar 

  • Li B, Dewey C (2011) RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinf 12:323

    Article  CAS  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    Article  CAS  PubMed  Google Scholar 

  • Molina L, Kahmann R (2007) An Ustilago maydis gene involved in H2O2 detoxification is required for virulence. Plant Cell 19:2293–2309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan BA, Banks GR, Toone WM, Raitt D, Kuge S, Johnston LH (1997) The Skn7 response regulator controls gene expression in the oxidative stress response of the budding yeast Saccharomyces  cerevisiae. EMBO J 16:1035–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motoyama T, Ochiai N, Morita M (2008) Involvement of putative response regulator genes of the rice blast fungus Magnaporthe  oryzae in osmotic stress response, fungicide action, and pathogenicity. Curr Genet 54:185–195

    Article  CAS  PubMed  Google Scholar 

  • Moye-Rowley WS (2003) Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot Cell 2:381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulford KE, Fassler JS (2011) Association of the Skn7 and Yap1 transcription factors in the Saccharomyces  cerevisiae oxidative stress response. Eukaryot Cell 10:761–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27:437–496

    Article  CAS  PubMed  Google Scholar 

  • Ploetz RC (2006) Fusarium wilt of banana is caused by several pathogens referred to as Fusarium  oxysporum f. sp. cubense. Phytopathology 96:653–656

    Article  PubMed  Google Scholar 

  • Qi X, Guo L, Yang L, Huang J (2013) Foatf1, a bZIP transcription factor of Fusarium  oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.). Physiol Mol Plant Pathology 84:76–85

    Article  CAS  Google Scholar 

  • Qiu L, Pashkova N, Walker JR, Winistorfer S, Dhe-Paganon S (2010) Structure and function of the PLAA/Ufd3-p97/Cdc48 complex. J Biol Chem 285:365–372

    Article  CAS  PubMed  Google Scholar 

  • Raitt DC, Johnson AL, Erkine AM, Makino K, Morgan B (2000) The Skn7 response regulator of Saccharomyces  cerevisiae interacts with Hsf1 in vivo and is required for the induction of heat shock genes by oxidative stress. Mol Biol Cell 11:2335–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB (2013) Genome-wide transcriptional response of Trichoderma  reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics 14:541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rokas A, Gibbons JG, Zhou X, Beauvais A, Latgé JP (2012) The diverse applications of RNA-seq for functional genomic studies in Aspergillus  fumigatus. Ann N Y Acad Sci 1273:25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saijo T, Miyazaki T, Izumikawa K (2010) Skn7p is involved in oxidative stress response and virulence of Candida  glabrata. Mycopathologia 169:81–90

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Chen P, Chen Y, Lu Y, Wang C (2015) MrSkn7 controls sporulation, cell wall integrity, autolysis, and virulence in Metarhizium  robertsii. Eukaryot Cell 14:396–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ (2012) Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1003604

    Article  CAS  Google Scholar 

  • Tiwari S, Thakur R, Shankar J (2015) Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int 2:1–11

    Article  CAS  Google Scholar 

  • Vargas-Peréz I, Sánchez O, Kawasaki L, Georgellis D, Aguirre J (2007) Response regulators SrrA and SskA are central components of a phosphorelay system involved in stress signal transduction and asexual sporulation in Aspergillus  nidulans. Eukaryot Cell 6:1570–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ZX, Zhou XZ, Meng HM (2014) Comparative transcriptomic analysis of the heat stress response in the filamentous fungus Metarhizium  anisopliae using RNA-seq. Appl Microbiol Biotechnol 98:5589–5597

    Article  CAS  PubMed  Google Scholar 

  • Wormley FL Jr, Heinrich G, Miller JL, Perfect JR, Cox GM (2005) Identification and characterization of an SKN7 homologue in Cryptococcus  neoformans. Infect Immun 73:5022–5030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11:R14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Xu G, Geng L (2016) The stress response regulator AflSkn7 influences morphological development, stress response, and pathogenicity in the fungus Aspergillus flavus. Toxins 8:202

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant no. 31560491) and the Scientific Research Fund Project of Hainan University (kyqd1543).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingzhu Qi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving with human participants or animals

This article does not contain any studies with human participants or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Liu, L. & Wang, J. Stress response regulator FoSkn7 participates in the pathogenicity of Fusariumoxysporum f. spcubense race 4 by conferring resistance to exogenous oxidative stress. J Gen Plant Pathol 85, 382–394 (2019). https://doi.org/10.1007/s10327-019-00858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10327-019-00858-6

Keywords

Navigation