Skip to main content
Log in

Synthesis of 3-carboxycoumarins at room temperature in water extract of banana peels

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The 3-carboxycoumarin is a major heterocycle in many biologically active agents, including anti-cancer, antibacterial and cosmetics. 3-Carboxycoumarins are also involved in the actions of plant growth hormones and growth regulators. Many catalytic systems have been used for the synthesis of 3-carboxycoumarins but such systems present issues such as harsh reaction conditions, tedious work-up and use of toxic solvents. Therefore, here we tested the synthesis of 3-carboxycoumarins by one-pot Knoevenagel condensation and intramolecular cyclization of various 2-hydroxybenzaldehydes with meldrum’s acid, using water extract of banana. Products were obtained in 76–94% yields in 420–490 min at room temperature by simple filtration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ajani OO, Nwinyi OC (2010) Microwave-assisted synthesis and evaluation of antimicrobial activity of 3-{3-(s-aryl and s-heteroaromatic) acryloyl}-2H-chromen-2-one derivatives. J Heterocycl Chem 47:179–187. doi:10.1002/jhet.298

    CAS  Google Scholar 

  • Alvim J Jr, Dias RL, Castilho MS, Oliva G, Corrêa AG (2005) Preparation and evaluation of a coumarin library towards the inhibitory activity of the enzyme gGAPDH from Trypanosoma cruzi. J Braz Chem Soc 16:763–773. doi:10.1590/S0103-50532005000500014

    Article  CAS  Google Scholar 

  • Andrade LH, Utsunomiya RS, Omori AT, Porto AL, Comasseto JV (2006) Edible catalysts for clean chemical reactions: bioreduction of aromatic ketones and biooxidation of secondary alcohols using plants. J Mol Catal B Enzym 38:84–90. doi:10.1016/j.molcatb.2005.11.009

    Article  CAS  Google Scholar 

  • Baldassarre F, Bertoni G, Chiappe C, Marioni F (2000) Preparative synthesis of chiral alcohols by enantioselective reduction with Daucus carota root as biocatalyst. J Mol Catal B Enzym 11:55–58. doi:10.1016/S1381-1177(00)00189-2

    Article  CAS  Google Scholar 

  • Bandgar BP (1999) Solvent-free one-pot rapid synthesis of 3-carboxycoumarins using focused microwaves. Green Chem 1:243–245. doi:10.1039/A905811G

    Article  CAS  Google Scholar 

  • Bandgar BP, Uppalla LS, Sadavarte VS (2002) Lithium perchlorate and lithium bromide catalysed solvent free one pot rapid synthesis of 3-carboxycoumarins under microwave irradiation. J Chem Res 2002:40–41. doi:10.3184/030823402103170402

    Article  Google Scholar 

  • Bennamane M, Zeror S, Aribi-Zouioueche L (2015) Asymmetric reduction of ketones by biocatalysis using clementine mandarin (citrus reticulata) fruit grown in Annaba or by ruthenium catalysis for access to both enantiomers. Chirality 27:205–210. doi:10.1002/chir.22413

    Article  CAS  Google Scholar 

  • Boruah PR, Ali AA, Saikia B, Sarma D (2015) A novel green protocol for ligand free Suzuki-Miyaura cross-coupling reactions in WEB at room temperature. Green Chem 17:1442–1445. doi:10.1039/c4gc02522a

    Article  CAS  Google Scholar 

  • Chanda A, Fokin VV (2009) Organic synthesis “on water”. Chem Rev 109:725–748. doi:10.1021/cr800448q

    Article  CAS  Google Scholar 

  • Chandraá Barua N (2015) H 2 O 2 in WEB: a highly efficient catalyst system for the Dakin reaction. Green Chem 17:4533–4536. doi:10.1039/c5gc01404b

    Article  Google Scholar 

  • Chavan HV, Bandgar BP (2013) Aqueous extract of acacia concinna pods: an efficient surfactant type catalyst for synthesis of 3-carboxycoumarins and cinnamic acids via Knoevenagel condensation. ACS Sustain Chem Eng 1:929–936. doi:10.1021/sc4000237

    Article  CAS  Google Scholar 

  • Chimenti F, Bizzarri B, Bolasco A, Secci D, Chimenti P, Granese A, Carradori S, Rivanera D, Zicari A, Scaltrito MM, Sisto F (2010) Synthesis, selective anti-Helicobacter pylori activity, and cytotoxicity of novel N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides. Bioorg Med Chem Lett 20:4922–4926. doi:10.1016/j.bmcl.2014.04.066

    Article  CAS  Google Scholar 

  • Deka DC, Talukdar NN (2007) Chemical and spectroscopic investigation of Kolakhar and its commercial importance. Ind J Tradit Knowl 6:72–78

    Google Scholar 

  • Gašo-Sokač D, Bušić V, Cetina M, Jukić M (2014) An efficient synthesis of pyridoxal oxime derivatives under microwave irradiation. Molecules 19(6):7610–7620

    Article  Google Scholar 

  • Gupta M, Paul S, Gupta R (2010) General aspects of 12 basic principles of green chemistry with applications. Curr Sci 99:1341–1360

    CAS  Google Scholar 

  • He X, Shang Y, Yu Z, Fang M, Zhou Y, Han G, Wu F (2014) FeCl3-Catalyzed four-component nucleophilic addition/intermolecular cyclization yielding polysubstituted pyridine derivatives. J Org Chem 79:8882–8888. doi:10.1021/jo5014383

    Article  CAS  Google Scholar 

  • Hekmatshoar R, Rezaei A, Beheshtiha SS (2009) Silica sulfuric acid: a versatile and reusable catalyst for synthesis of coumarin-3-carboxylic acids in a solvent less system. Phosphorus Sulfur Silicon 184:2491–2496. doi:10.1080/10426500802505580

    Article  CAS  Google Scholar 

  • Himaja M, Poppy D, Asif K (2011) Green technique-solvent free synthesis and its advantages. Int J Res Ayurveda Pharm 2:1079–1086

    CAS  Google Scholar 

  • Hoult JRS, Paya M (1996) Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen Pharmacol: Vasc Syst 27:713–722. doi:10.1016/0306-3623(95)02112-4

    Article  CAS  Google Scholar 

  • Karami B, Farahi M, Khodabakhshi S (2012) Rapid synthesis of novel and known coumarin-3-carboxylic acids using stannous chloride dihydrate under solvent-free conditions. Helv Chim Acta 95:455–460. doi:10.1002/hlca.201100342

    Article  CAS  Google Scholar 

  • Kempen I, Papapostolou D, Thierry N, Pochet L, Counerotte S, Masereel B, Foidart JM, Reboud-Ravaux M, Noël A, Pirotte B (2003) 3-Bromophenyl 6-acetoxymethyl-2-oxo-2H-1-benzopyran-3-carboxylate inhibits cancer cell invasion in vitro and tumour growth in vivo. Br J Cancer 88:1111–1118. doi:10.1038/sj.bjc.6600856

    Article  CAS  Google Scholar 

  • Kempen I, Hemmer M, Counerotte S, Pochet L, De Tullio P, Foidart JM, Blacher S, Noël A, Frankenne F, Pirotte B (2008) 6-Substituted 2-oxo-2H-1-benzopyran-3-carboxylic acid derivatives in a new approach of the treatment of cancer cell invasion and metastasis. Eur J Med Chem 43:2735–2750. doi:10.1016/j.ejmech.2008.01.024

    Article  CAS  Google Scholar 

  • Koeller KM, Wong CH (2001) Enzymes for chemical synthesis. Nature 409:232–240. doi:10.1038/35051706

    Article  CAS  Google Scholar 

  • Mironowicz A (1998) Biotransformations of racemic acetates by potato and topinambur tubers. Phytochemistry 47:1531–1534. doi:10.1016/S0031-9422(97)00758-9

    Article  CAS  Google Scholar 

  • Myung N, Connelly S, Kim B, Park SJ, Wilson IA, Kelly JW, Choi S (2013) Bifunctional coumarin derivatives that inhibit transthyretin amyloidogenesis and serve as fluorescent transthyretin folding sensors. Chem Commun 49:9188–9190. doi:10.1039/C3CC44667K

    Article  CAS  Google Scholar 

  • Neog SR, Deka CD (2013) Salt substitute from banana plant (Musa Balbiciana Colla). J Chem Pharm Res 5:155–159

    CAS  Google Scholar 

  • Pal R (2013) Fruit juice: a natural, green and biocatalyst system in organic synthesis. Open J Org Chem 1:47–56. doi:10.12966/ojoc.10.02.2013

    Google Scholar 

  • Rekhaá Boruah P, AzizáAli A (2015) Pd (OAc) 2 in WERSA: a novel green catalytic system for Suzuki-Miyaura cross-coupling reactions at room temperature. Chem Commun 51:11489–11492. doi:10.1039/C5CC04561D

    Article  Google Scholar 

  • Seddighi M, Shirini F, Mamaghani M (2013) Sulfonated rice husk ash (RHA-SO 3 H) as a highly efficient and reusable catalyst for the synthesis of some bis-heterocyclic compounds. RSC Adv 3:24046–24053. doi:10.1039/C3RA44053B

    Article  CAS  Google Scholar 

  • Shaabani A, Ghadari R, Rahmati A, Rezayan AH (2009) Coumarin synthesis via Knoevenagel condensation reaction in 1, 1, 3, 3-N, N, N′, N′-tetramethylguanidinium trifluoroacetate ionic liquid. J Iran Chem Soc 6:710–714. doi:10.1007/BF03246160

    Article  CAS  Google Scholar 

  • Silver GM, Fall R (1991) Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. Plant Physiol 97:1588–1591

    Article  CAS  Google Scholar 

  • Undale KA, Gaikwad DS, Shaikh TS, Desai UV, Pore DM (2012) Potassium phosphate catalyzed efficient synthesis of 3-carboxycoumarins. Indian J Chem–Part B Org Incl Med 51:1039

    Google Scholar 

  • Vekariya RH, Patel HD (2014) Recent advances in the synthesis of coumarin derivatives via knoevenagel condensation: a review. Synth Commun 44:2756–2788. doi:10.1080/00397911.2014.926374

    Article  CAS  Google Scholar 

  • Wang CJ, Hsieh YJ, Chu CY, Lin YL, Tseng TH (2002) Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Lett 183:163–168. doi:10.1016/S0304-3835(02)00031-9

    Article  CAS  Google Scholar 

  • Zhou X, Wang XB, Wang T, Kong LY (2008) Design, synthesis, and acetylcholinesterase inhibitory activity of novel coumarin analogues. Bioorg Med Chem 16:8011–8021. doi:10.1016/j.bmc.2008.07.068

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to CSIR, New Delhi, India for financial assistance under the major research project [F.No.02 (0130)/13/EMR-II]; Authors are also thankful to SAIF, Punjab University, Chandigarh, for providing analytical facilities for characterization of compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratnamala S. Bendre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagul, S.D., Rajput, J.D. & Bendre, R.S. Synthesis of 3-carboxycoumarins at room temperature in water extract of banana peels. Environ Chem Lett 15, 725–731 (2017). https://doi.org/10.1007/s10311-017-0645-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0645-z

Keywords

Navigation