Skip to main content
Log in

Enhanced antimicrobial activity of the food-protecting nisin peptide by bioconjugation with silver nanoparticles

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Nisin is an antimicrobial peptide widely used in the food industry. The efficacy of nisin has decreased due to the development of resistant bacteria. For instance, bacteria such as Staphylococcus aureus have resistance by digesting nisin using the nisinase enzyme. The efficacy of nisin could be improved using bioconjugation with metal nanoparticles. Here we synthesized silver nanoparticles using the extract of Cymbopogon citratus; then, we bioconjugated those silver nanoparticles with nisin to form a nanosilver bioconjugate. Silver nanoparticles and silver bioconjugate were characterized by UV–Vis spectroscopy, nanoparticle tracking analysis, zeta potential measurement and transmission electron microscopy. In vitro antimicrobial efficacy of both silver nanoparticles and silver bioconjugate was evaluated against selected food spoilage microorganisms such as Listeria monocytogenes, S. aureus, Pseudomonas fluorescens, Aspergillus niger and Fusarium moniliforme. Results show that the antimicrobial potential of nisin increased after bioconjugation with silver nanoparticles. Further, we developed agar film containing nanosilver bioconjugate and also evaluated its antimicrobial activity against selected food spoilage microorganisms. The agar film demonstrated maximum activity against P. fluorescens, of 19 mm, and the minimum against F. moniliforme, of 12 mm. Overall, agar film containing nisin and silver nanoparticles can be used against food spoilage microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhikari MD, Das G, Ramesh A (2012) Retention of nisin activity at elevated pH in a organic acid complex and gold nanoparticles composite. Chem Commun 48:8928–8930

    Article  CAS  Google Scholar 

  • Ahire JJ, Neveling DP, Dicks LMT (2015) Co-spinning of silver nanoparticles with nisin increases the antimicrobial spectrum of PDLLA: PEO nanofibers. Curr Microbiol 71(1):24–30. doi:10.1007/s00284-015-0813-y

    Article  CAS  Google Scholar 

  • Ahmed S, Saifullah Ahmad M, Swami Babu Lal, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7. doi:10.1016/j.jrras.2015.06.006

    Article  Google Scholar 

  • Bauer AW, Kirby MM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:493–496

    CAS  Google Scholar 

  • Belluco S, Losasso C, Patuzzi I, Rigo L, Conficoni D, Gallocchio F, Cibin V, Catellani P, Segato S, Ricci A (2016) Silver as antibacterial toward Listeria monocytogenes. Front Microbiol. doi:10.3389/fmicb.2016.00307

    Google Scholar 

  • Bhople S, Gaikwad S, Deshmukh S, Bonde S, Gade A, Sen S, Brezinska A, Dahm H, Rai M (2016) Myxobacteria-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples. IET Nanobiotechnol. doi:10.1049/iet-nbt.2015.0111

    Google Scholar 

  • Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14:226–235. doi:10.1007/s10311-015-0543-1

    Article  Google Scholar 

  • Chollet E, Sebti I, Martial-Gros A, Degraeve P (2008) Nisin preliminary study as a potential preservative for sliced ripened cheese: NaCl, fat and enzymes influence on nisin concentration and its antimicrobial activity. Food Control 19:982–989. doi:10.1016/j.foodcont.2007.10.005

    Article  CAS  Google Scholar 

  • Dasgupta N, Ramalingam C (2016) Silver nanoparticle antimicrobial activity explained by membrane rupture and reactive oxygen generation. Environ Chem Lett 14:477–485. doi:10.1007/s10311-016-0583-1

    Article  CAS  Google Scholar 

  • Gade A, Gaikwad S, Duran N, Rai M (2014) Green synthesis of silver nanoparticles by Phoma glomerata. Micron 59:52–59. doi:10.1016/j.micron.2013.12.005

    Article  CAS  Google Scholar 

  • Gaikwad S, Birla S, Ingle A, Gade A, Marcato P, Rai M, Duran N (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24(12):1974–1982

  • Golubeva OY, Shamova OV, Orlov DS, Pazina T, Yu Boldina AS, Drozdova IA, Kokryakov VN (2011) Synthesis and study of antimicrobial activity of bioconjugates of silver nanoparticles and endogenous antibiotics. Glass Phys Chem 37(1):78–84. doi:10.1134/S1087659611010056

    Article  CAS  Google Scholar 

  • Gomashe AV, Dharmik PG (2014) Synergistic effect of gold nanoparticles and bacteriocin against food blemishing microbes: a novel approach for food packaging material preparation. Global J Res Anal 3(5):1–3. doi:10.14373/22778160

    Google Scholar 

  • Kagithoju S, Godishala V, Nanna RS (2015) Eco-friendly and green synthesis of silver nanoparticles using leaf extract of Strychnos potatorum Linn.F. and their bactericidal activities. 3. Biotech 5:709–714. doi:10.1007/s13205-014-0272-3

    Google Scholar 

  • Kanchan K, Satsangi GP, Shrivastavaf JN (2015) Bio-Efficacy of synthesized silver nanoparticles against food spoilage fungi by using different food packaging sheets. Int J Pure Appl Biosci 3(2):492–497

    Google Scholar 

  • Keat CL, Aziz A, Eid AM, Elmarzugi NA (2015) Biosynthesis of nanoparticles and silver nanoparticles. Bioresour Bioprocess. doi:10.1186/s40643-015-0076-2

    Google Scholar 

  • Lopez-Abarrategui C, Figueroa-Espi V, Lugo-Alvarez MB, Pereira CD, Garay H, Barbosa João ARG, Falcão R, Jiménez-Hernández L, Estévez-Hernández O, Reguera E, Franco OL, Dias SC, Otero-Gonzalez AJ (2016) The intrinsic antimicrobial activity of citric acid-coated manganese ferrite nanoparticles is enhanced after conjugation with the antifungal peptide Cm-p5. Int J Nanomed 11:3849–3857. doi:10.2147/IJN.S107561

    Article  Google Scholar 

  • Malik P, Shankar R, Malik V, Sharma N, Mukherjee TK (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart. doi:10.1155/2014/302429

    Google Scholar 

  • Mubayi A, Chatterji S, Rai PM, Watal G (2012) Evidence based green synthesis of nanoparticles. Adv Mat Lett 3(6):519–525. doi:10.5185/amlett.2012.icnano.353

    Article  Google Scholar 

  • Nagaonkar D, Rai M (2015) Sequentially reduced biogenic silver–gold nanoparticles with enhanced antimicrobial potential over silver and gold monometallic nanoparticles. Adv Mater Lett 6(4):334–341. doi:10.5185/amlett.2015.5737

    Article  CAS  Google Scholar 

  • Pal I, Brahmkhatria VP, Berac S, Bhattacharyya D, Quirishid Y, Bhuniac A, Atreya HS (2016) Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle. J Colloid Interface Sci 483:385–393. doi:10.1016/j.jcis.2016.08.043

    Article  CAS  Google Scholar 

  • Patra JK, Baek K-H (2017) Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects. Front Microbiol 8(167):1–14. doi:10.3389/fmicb.2017.00167

    Google Scholar 

  • Pulit-Prociak J, Stokłosa K, Banach M (2015) Nanosilver products and toxicity. Environ Chem Lett 13:59–68. doi:10.1007/s10311-014-0490-2

    Article  CAS  Google Scholar 

  • Qi X, Poernomo G, Wang K, Chen Y, Chan-Park MB, Xu R, Chang MW, Chang MW (2011) Covalent immobilization of nisin on multi-walled carbon nanotubes: superior antimicrobial and anti-biofilm properties. Nanoscale 3(4):1874–1880. doi:10.1039/C1NR10024F

    Article  CAS  Google Scholar 

  • Rajeshkumar S, Malarkodi C (2014) In vitro antibacterial activity and mechanism of silver nanoparticles against foodborne pathogens. Bioinorg Chem Appl. doi:10.1155/2014/581890

    Google Scholar 

  • Rasheed QJ (2015) Synthesis and optimization of nisin–silver nanoparticles at different conditions. J Eng Technol 33(2):331–341

    Google Scholar 

  • Sadiq S, Imran M, Habib H, Shabbir S, Ihsan A, Zafar Y, Hafeez FY (2016) Potential of monolaurin based food-grade nano-micelles loaded with nisin Z for synergistic antimicrobial action against Staphylococcus aureus. LWT Food Sci Technol 71:227–233. doi:10.1016/j.lwt2016.03.045

    Article  CAS  Google Scholar 

  • Shende S, Gade A, Rai M (2016) Large scale synthesis and antibacterial activity of fungal derived silver nanoparticles. Environ Chem Lett. doi:10.1007/s10311-016-0599-6

    Google Scholar 

  • Thirumurugan A, Ramachandran S, Gowri AS (2013) Combined effect of bacteriocin with gold nanoparticles against food spoiling bacteria-an approach for food packaging material preparation. Int Food Res J 20(4):1909–1912

    Google Scholar 

  • Upendra RS, Khandelwal P, Jana K, Ajay Kumar N, Gayathri Devi M, Stephaney ML (2016) Bacteriocin production from indigenous strains of lactic acid bacteria isolated from selected fermented food sources. Int J Pharma Res Health Sci 4(1):982–990

    CAS  Google Scholar 

  • Velusamy P, Venkat Kumar G, Jeyanthi V, Das J, Pachaiappan R (2016) Bio-inspiredgreen nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32(2):95–102. doi:10.5487/TR.2016.32.2.09

    Article  CAS  Google Scholar 

  • Wayne PA (2002) National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi Approved standard, M27-A

  • Xia Y, Halas NJ (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bulletin 30:338–348

Download references

Acknowledgements

The authors are thankful to Department of Science and Technology, New Delhi, India, for providing DST-INSPIRE fellowship grant No (IF 150452) to pursue research work and University Grant Commission, New Delhi, for financial assistance under UGC-SAP Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Rai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, R., Rai, M. & Santos, C.A. Enhanced antimicrobial activity of the food-protecting nisin peptide by bioconjugation with silver nanoparticles. Environ Chem Lett 15, 443–452 (2017). https://doi.org/10.1007/s10311-017-0626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-017-0626-2

Keywords

Navigation