Skip to main content
Log in

Up to 95 % reduction of chemical oxygen demand of slaughterhouse effluents using Fenton and photo-Fenton oxidation

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Meat industries produce effluents containing high concentrations of organic and inorganic compounds, which must be removed before being discharged or reused. Advanced oxidation processes using Fenton reaction coupled with UV, solar radiation, and electrochemical oxidation are promising methods. Here, we treated the effluent from an anaerobic digester using: (a) the photoelectro-Fenton process, using a system with a Ti-RuO2 anode and a carbon felt cathode, (b) the solar photo-Fenton process, using a batch reactor and a compound parabolic collector, and (c) a combination of Fenton and solar photo-Fenton processes. The effluent had an initial chemical oxygen demand (COD) of 1159 mgL−1, and we obtained high removal efficiencies of COD, up to 95 %, using the combination of Fenton and solar photo-Fenton processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • American Public Health Association AWWA, Water Environment Federation (1998) Standard methods for the examination of water and wastewater, vol 1, 20th edn. American Public Health Association, Washington

    Google Scholar 

  • Arslan-Alaton I, Tureli G, Olmez-Hanci T (2009) Treatment of azo dye production wastewaters using photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. J Photochem Photobiol A 202(2–3):142–153. doi:10.1016/j.jphotochem.2008.11.019

    Article  CAS  Google Scholar 

  • Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2(1):557–572. doi:10.1016/j.jece.2013.10.011

    Article  CAS  Google Scholar 

  • Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B 166–167:603–643. doi:10.1016/j.apcatb.2014.11.016

    Article  Google Scholar 

  • Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109(12):6570–6631. doi:10.1021/cr900136g

    Article  CAS  Google Scholar 

  • COFEPRIS (2006) Evaluación de riesgos de los rastros y mataderos municipales. COFEPRIS, México

    Google Scholar 

  • Daghrir R, Drogui P (2013) Coupled electrocoagulation–electro-Fenton for efficient domestic wastewater treatment. Environ Chem Lett 11(2):151–156. doi:10.1007/s10311-012-0390-2

    Article  CAS  Google Scholar 

  • Ein-Mozaffari F, Mohajerani M, Mehrvar M (2009) An overview of the integration of advanced oxidation technologies and other processes for water and wastewater treatment. Int J Eng 3(2):120–146

    Google Scholar 

  • Eisenhauer HR (1964) Oxidation of phenolic wastes: I. Oxidation with hydrogen peroxide and ferrous salt reagent. J Water Pollut Control Fed 36:1116–1128

    CAS  Google Scholar 

  • García-Montaño J, Pérez-Estrada L, Oller I, Maldonado MI, Torrades F, Peral J (2008) Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. J Photochem Photobiol A 195(2–3):205–214. doi:10.1016/j.jphotochem.2007.10.004

    Article  Google Scholar 

  • Ince NH, Tezcanh G (1999) Treatability of textile dye-bath effluents by advanced oxidation: preparation for reuse. Water Sci Technol 40(1):183–190. doi:10.1016/S0273-1223(99)00379-0

    Article  CAS  Google Scholar 

  • Isarain-Chávez E, Arias C, Cabot PL, Centellas F, Rodríguez RM, Garrido JA, Brillas E (2010) Mineralization of the drug β-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl Catal B 96(3–4):361–369. doi:10.1016/j.apcatb.2010.02.033

    Article  Google Scholar 

  • Isarain-Chávez E, de la Rosa C, Godínez LA, Brillas E, Peralta-Hernández JM (2014) Comparative study of electrochemical water treatment processes for a tannery wastewater effluent. J Electroanal Chem 713:62–69. doi:10.1016/j.jelechem.2013.11.016

    Article  Google Scholar 

  • Kang YW, Hwang K-Y (2000) Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Res 34(10):2786–2790. doi:10.1016/S0043-1354(99)00388-7

    Article  CAS  Google Scholar 

  • Lau IWC, Peng W, Herbert HPF (2001) Organic removal of anaerobically treated leachate by Fenton coagulation. J Environ Eng 127(7):666–669

    Article  CAS  Google Scholar 

  • Lin SH, Lo CC (1997) Fenton process for treatment of desizing wastewater. Water Res 31(8):2050–2056. doi:10.1016/S0043-1354(97)00024-9

    Article  CAS  Google Scholar 

  • Macías Sánchez J, Hinojosa Reyes L, Guzmán Mar JL, Peralta Hernández JM, Hernández Ramírez A (2010) Performance of the photo-Fenton process in the degradation of a model azo dye mixture. Photochem Photobiol Sci 10(3):332–337

    Article  Google Scholar 

  • Neyens E, Baeyens J (2003) A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater 98(1–3):33–50. doi:10.1016/S0304-3894(02)00282-0

    Article  CAS  Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci Total Environ 409(20):4141–4166. doi:10.1016/j.scitotenv.2010.08.061

    Article  CAS  Google Scholar 

  • Paramo Vargas J, Chavez EI, De la Rosa C, Martínez Huitle CA, Peralta Hernández JM (2015) Treatment by advanced oxidation processes for an effluent of an anaerobic digester from a slaughterhouse. Sustain Environ Res 25(4):195–205

    CAS  Google Scholar 

  • Peralta Hernández JM, Martínez Huitle CA, Guzman Mar JL, Hernández Ramírez A (2009) Recent advances in the application of electro-Fenton and photoelectro-Fenton process for removal of synthetic dyes in wastewater treatment. J Environ Eng Manag 19(5):257–265

    Google Scholar 

  • Puig GP (2012) Virtual water: concepts and implications. Orinoquia 16(1):69–76

  • Sandip S, Ruparelia JP, Patel LM (2011) A general review on advanced oxidation processes for waste water treatment. Institute of Technology, Nirma University, Ahmedabad

    Google Scholar 

  • Sirés I, Brillas E, Oturan M, Rodrigo M, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367. doi:10.1007/s11356-014-2783-1

    Article  Google Scholar 

  • Zhang H, Wu X, Li X (2012) Oxidation and coagulation removal of COD from landfill leachate by Fered-Fenton process. Chem Eng J 210:188–194. doi:10.1016/j.cej.2012.08.094

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Mexican programs, CONACYT and SEP-PROMEP, as well as the collaboration of Joel Anderson (Cooperant sponsored by the US Peace Corps under agreement with CONACYT) and Salvador Viñals in the English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan M. Peralta-Hernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Páramo-Vargas, J., Granados, S.G., Maldonado-Rubio, M.I. et al. Up to 95 % reduction of chemical oxygen demand of slaughterhouse effluents using Fenton and photo-Fenton oxidation. Environ Chem Lett 14, 149–154 (2016). https://doi.org/10.1007/s10311-015-0534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0534-2

Keywords

Navigation