Skip to main content
Log in

Dispersive liquid–liquid microextraction and HPLC to analyse fluoxetine and metoprolol enantiomers in wastewaters

  • Original Paper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Sample extraction is a major step in environmental analyses due both to the high complexity of matrices and to the low concentration of the target analytes. Sample extraction is usually expensive, laborious, time-consuming and requires a high amount of organic solvents. Actually, there is a lack of miniaturized methodologies for sample extraction and chiral analyses. Here, we developed a dispersive liquid–liquid microextraction (DLLME) to extract the pharmaceuticals fluoxetine and metoprolol, as models of basic chiral compounds, from wastewater samples. Compounds were then analysed by enantioselective high-performance liquid chromatography. We monitored the influence of sample pH, extracting and dispersive solvent and respective volumes, salt addition, extracting and vortexing time. The DLLME method was validated within the range of 1–10 µg L−1 for fluoxetine enantiomers and 0.5–10 µg L−1 for metoprolol enantiomers. Accuracy ranged from 90.6 to 106 % and recovery rates from 54.5 to 81.5 %. Relative standard deviation values lower than 7.84 and 9.00 % were obtained for intra- and inter-batch precision, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al Aukidy M, Verlicchi P, Voulvoulis N (2014) A framework for the assessment of the environmental risk posed by pharmaceuticals originating from hospital effluents. Sci Total Environ 493:54–64

    Article  CAS  Google Scholar 

  • Barclay VKH, Tyrefors NL, Johansson IM, Pettersson CE (2012a) Chiral analysis of metoprolol and two of its metabolites, α-hydroxymetoprolol and deaminated metoprolol, in wastewater using liquid chromatography–tandem mass spectrometry. J Chromatogr A 1269:208–217

    Article  CAS  Google Scholar 

  • Barclay VKH, Tyrefors NL, Johansson IM, Pettersson CE (2012b) Trace analysis of fluoxetine and its metabolite norfluoxetine. Part II: enantioselective quantification and studies of matrix effects in raw and treated wastewater by solid phase extraction and liquid chromatography–tandem mass spectrometry. J Chromatogr A 1227:105–114

    Article  CAS  Google Scholar 

  • Brooks BW, Turner PK, Stanley JK, Weston JJ, Glidewell EA, Foran CM, Slattery M, La Point TW, Huggett DB (2003) Waterborne and sediment toxicity of fluoxetine to select organisms. Chemosphere 52(1):135–142

    Article  CAS  Google Scholar 

  • Buser H-R, Poiger T, Muller MD (1999) Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol 33(15):2529–2535

    Article  CAS  Google Scholar 

  • Daughton CG (2014) Eco-directed sustainable prescribing: feasibility for reducing water contamination by drugs. Sci Total Environ 493:392–404

    Article  CAS  Google Scholar 

  • De Andrés F, Castañeda G, Ríos Á (2009) Use of toxicity assays for enantiomeric discrimination of pharmaceutical substances. Chirality 21(8):751–759

    Article  Google Scholar 

  • de la Guardia M, Garrigues S (2014) The social responsibility of environmental analysis. Trends Environ Anal Chem 3–4:7–13

    Article  Google Scholar 

  • Dong Z, Senn DB, Moran RE, Shine JP (2013) Prioritizing environmental risk of prescription pharmaceuticals. Regul Toxicol Pharmacol 65(1):60–67

    Article  CAS  Google Scholar 

  • FDA (2001). Bioanalytical method validation: guidance for industry, U.S. Food and Drug Administration: 1–22. http://www.fda.gov/downloads/Drugs/Guidances/ucm070107.pdf

  • Flaherty CM, Dodson SI (2005) Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 61(2):200–207

    Article  CAS  Google Scholar 

  • Fono LJ, Sedlak DL (2005) Use of the chiral pharmaceutical propranolol to identify sewage discharges into surface waters. Environ Sci Technol 39(23):9244–9252

    Article  CAS  Google Scholar 

  • Foran CM, Weston J, Slattery M, Brooks BW, Huggett DB (2004) Reproductive assessment of Japanese Medaka (Oryzias latipes) following a four-week fluoxetine (SSRI) exposure. Arch Environ Contam Toxicol 46(4):511–517

    Article  CAS  Google Scholar 

  • Gonzalez-Rey M, Bebianno MJ (2013) Does selective serotonin reuptake inhibitor (SSRI) fluoxetine affects mussel Mytilus galloprovincialis? Environ Pollut 173:200–209

    Article  CAS  Google Scholar 

  • Henry TB, Black MC (2008) Acute and chronic toxicity of fluoxetine (selective serotonin reuptake inhibitor) in western mosquitofish. Arch Environ Contam Toxicol 54(2):325–330

    Article  CAS  Google Scholar 

  • Herrera-Herrera AV, Hernández-Borges J, Borges-Miquel TM, Rodríguez-Delgado MÁ (2013) Dispersive liquid–liquid microextraction combined with ultra-high performance liquid chromatography for the simultaneous determination of 25 sulfonamide and quinolone antibiotics in water samples. J Pharm Biomed Anal 75:130–137

    Article  CAS  Google Scholar 

  • Hughes SR, Kay P, Brown LE (2013) Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environ Sci Technol 47(2):661–677

    Article  CAS  Google Scholar 

  • ICH (1996) Validation of analytical procedures: text and methodology Q2(R1). International Conference on Harmonization (March 3):1–13

  • Lao W, Gan J (2012) Enantioselective degradation of warfarin in soils. Chirality 24(1):54–59

    Article  CAS  Google Scholar 

  • Lima DLD, Silva CP, Otero M, Esteves VI (2013) Low cost methodology for estrogens monitoring in water samples using dispersive liquid–liquid microextraction and HPLC with fluorescence detection. Talanta 115:980–985

    Article  CAS  Google Scholar 

  • Lima DLD, Silva CP, Schneider RJ, Otero M, Esteves VI (2014) Application of dispersive liquid–liquid microextraction for estrogens' quantification by enzyme-linked immunosorbent assay. Talanta 125:102–106

    Article  CAS  Google Scholar 

  • López-Serna R, Kasprzyk-Hordern B, Petrović M, Barceló D (2013) Multi-residue enantiomeric analysis of pharmaceuticals and their active metabolites in the Guadalquivir River basin (South Spain) by chiral liquid chromatography coupled with tandem mass spectrometry. Anal Bioanal Chem 405(18):5859–5873

    Article  Google Scholar 

  • MacLeod SL, Sudhir P, Wong CS (2007) Stereoisomer analysis of wastewater-derived b-blockers, selective serotonin re-uptake inhibitors, and salbutamol by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 1170(1–2):23–33

    Article  CAS  Google Scholar 

  • Martín J, Buchberger W, Alonso E, Himmelsbach M, Aparicio I (2011) Comparison of different extraction methods for the determination of statin drugs in wastewater and river water by HPLC/Q-TOF-MS. Talanta 85(1):607–615

    Article  Google Scholar 

  • Maszkowska J, Stolte S, Kumirska J, Lukaszewicz P, Mioduszewska K, Puckowski A, Caban M, Wagil M, Stepnowski P, Bialk-Bielinska A (2014) Beta-blockers in the environment: part II. Ecotoxicity study. Sci Total Environ 493:1122–1126

    Article  CAS  Google Scholar 

  • Morando MB, Medeiros LR, McDonald MD (2009) Fluoxetine treatment affects nitrogen waste excretion and osmoregulation in a marine teleost fish. Aquat Toxicol 95(2):164–171

    Article  CAS  Google Scholar 

  • Morante-Zarcero S, Sierra I (2012) Simultaneous enantiomeric determination of propranolol, metoprolol, pindolol, and atenolol in natural waters by HPLC on new polysaccharide-based stationary phase using a highly selective molecularly imprinted polymer extraction. Chirality 24(10):860–866

    Article  CAS  Google Scholar 

  • Paterson G, Metcalfe CD (2008) Uptake and depuration of the anti-depressant fluoxetine by the Japanese medaka (Oryzias latipes). Chemosphere 74(1):125–130

    Article  CAS  Google Scholar 

  • Rezaee M, Assadi Y, Milani Hosseini M-R, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid–liquid microextraction. J Chromatogr A 1116(1–2):1–9

    Article  CAS  Google Scholar 

  • Ribeiro AR, Castro PML, Tiritan ME (2012) Chiral pharmaceuticals in the environment. Environ Chem Lett 10(3):239–253

    Article  CAS  Google Scholar 

  • Ribeiro AR, Afonso CM, Castro PML, Tiritan ME (2013) Enantioselective HPLC analysis and biodegradation of atenolol, metoprolol and fluoxetine. Environ Chem Lett 11(1):83–90

    Article  CAS  Google Scholar 

  • Ribeiro AR, Maia AS, Cass QB, Tiritan ME (2014a) Enantioseparation of chiral pharmaceuticals in biomedical and environmental analyses by liquid chromatography: an overview. J Chromatogr B 968:8–21

    Article  CAS  Google Scholar 

  • Ribeiro AR, Santos LHMLM, Maia AS, Delerue-Matos C, Castro PML, Tiritan ME (2014b) Enantiomeric fraction evaluation of pharmaceuticals in environmental matrices by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1363:226–235

    Article  CAS  Google Scholar 

  • Ribeiro C, Ribeiro AR, Maia AS, Gonçalves VMF, Tiritan ME (2014c) New trends in sample preparation techniques for environmental analysis. Crit Rev Anal Chem 44(2):142–185

    Article  CAS  Google Scholar 

  • Sánchez-Argüello P, Fernández C, Tarazona JV (2009) Assessing the effects of fluoxetine on Physa acuta (Gastropoda, Pulmonata) and Chironomus riparius (Insecta, Diptera) using a two-species water-sediment test. Sci Total Environ 407(6):1937–1946

    Article  Google Scholar 

  • Santos LHMLM, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Montenegro MCBSM (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461–462:302–316

    Article  Google Scholar 

  • Schultz MM, Painter MM, Bartell SE, Logue A, Furlong ET, Werner SL, Schoenfuss HL (2011) Selective uptake and biological consequences of environmentally relevant antidepressant pharmaceutical exposures on male fathead minnows. Aquat Toxicol 104(1–2):38–47

    Article  CAS  Google Scholar 

  • Silvestre CIC, Santos JLM, Lima JLFC, Zagatto EAG (2009) Liquid–liquid extraction in flow analysis: a critical review. Anal Chim Acta 652(1–2):54–65

    Article  CAS  Google Scholar 

  • Stanley JK, Brooks BW (2009) Perspectives on ecological risk assessment of chiral compounds. Integr Environ Assess Manag 5(3):364–373

    Article  CAS  Google Scholar 

  • Vázquez MdMP, Vázquez PP, Galera MM, Sánchez LM (2012) Simple, rapid, and sensitive determination of beta-blockers in environmental water using dispersive liquid–liquid microextraction followed by liquid chromatography with fluorescence detection. J Sep Sci 35(17):2184–2192

    Article  Google Scholar 

  • Vulliet E, Cren-Olivé C, Grenier-Loustalot M-F (2011) Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environ Chem Lett 9(1):103–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work has been supported by Fundação para a Ciência e Tecnologia—FCT (PhD. grant attributed to ARR and ASM respectively, SFRH/BD/64999/2009 and SFRH/BD/86939/2012), from QREN-POPH, European Social Fund and MCTES. Authors also wish to acknowledge the support from national funds from FCT through projects FLUOROPHARMA, (PTDC/EBB-EBI/111699/2009), PEst-OE/EQB/LA0016/2013 and CEQUIMED-PEst-OE/SAU/UI4040/2014, as well as the support from CESPU through project PHARMADRUGS-CESPU-2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria E. Tiritan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, A.R., Gonçalves, V.M.F., Maia, A.S. et al. Dispersive liquid–liquid microextraction and HPLC to analyse fluoxetine and metoprolol enantiomers in wastewaters. Environ Chem Lett 13, 203–210 (2015). https://doi.org/10.1007/s10311-015-0498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0498-2

Keywords

Navigation