Skip to main content
Log in

Heterogeneous photocatalysis for removal of microbes from water

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Increasing water pollution by microbes has become a source of serious health concern across the globe. Production of potentially carcinogenic disinfection by-products has marred credibility of traditional water purification techniques like chlorination. Photocatalysis has emerged as a promising alternative technique for the disinfection of water with minimal risk of harmful by-products. The process involves a wide band gap semiconductor material which, upon irradiation of light, produces electrons and holes with high redox potential to degrade organic contaminants and microbes. In this review, we analyze the research trends in photocatalytic inactivation of water borne microorganisms. This report analyzes the major factors that affect the disinfection efficiency using this process. The discussion also includes plausible mechanisms of microbial degradation as well as a kinetic model of the inactivation process. Different approaches, like doping of semiconductors or energy band engineering or plasmon coupling, have been reported for the enhancement and utilization of ambient solar light. Photocatalysis could be a cost-effective and environmentally friendly water purification technique though further research is required to enhance its efficiency with the use of solar light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alrousan DMA, Dunlop PSM, McMurray TA, Byrne JA (2009) Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Res 43:47–54

    Google Scholar 

  • Baruah S, Dutta J (2009a) Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10:art. no. 013001

    Google Scholar 

  • Baruah S, Dutta J (2009b) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7:191–204

    Article  CAS  Google Scholar 

  • Baruah S, Rafique RF, Dutta J (2008) Visible light photocatalysis by tailoring crystal defects in zinc oxide nanostructures. Nano 3:399–407

    Article  CAS  Google Scholar 

  • Benabbou AK, Derriche Z, Felix C, Lejeune P, Guillard C (2007) Photocatalytic inactivation of Escherichia coli. Effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catal B 76:257–263

    Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38:1069–1077

    Google Scholar 

  • Dantur KI, Pizarro RA (2004) Effect of growth phase on the Escherichia coli response to ultraviolet-A radiation: influence of conditioned media, hydrogen peroxide and acetate. J Photochem Photobiol B 75:33–39

    Article  CAS  Google Scholar 

  • Erkan A, Bakir U, Karakas G (2006) Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A 184:313–321

    Article  CAS  Google Scholar 

  • Fernandez P, Blanco J, Sichel C, Malato S (2005) Water disinfection by solar photocatalysis using compound parabolic collectors. Catal Today 101:345–352

    Article  CAS  Google Scholar 

  • Fernandez-Ibanez P, Sichel C, Polo-Lopez MI, de Cara-Garcia M, Tello JC (2009) Photocatalytic disinfection of natural well water contaminated by Fusarium solani using TiO2 slurry in solar CPC photo-reactors. Catal Today 144:62–68

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C 9:1–12

    Article  CAS  Google Scholar 

  • Gopal K, Tripathy SS, Bersillon JL, Dubey SP (2007) Chlorination byproducts, their toxicodynamics and removal from drinking water. J Hazard Mater 140:1–6

    Article  CAS  Google Scholar 

  • Gumy D, Morais C, Bowen P, Pulgarin C, Giraldo S, Hajdu R, et al. (2006) Catalytic activity of commercial of TiO2 powder for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Appl Catal B 63:76–84

    Google Scholar 

  • Hayakawa T, Kuroiwa A, Higashi E, Nakano K (2007) Photoinduced bactericidal effect of Titania thin film against Legionella pneumophila. Med Bull Fukuoka Univ 34:71–81

    Google Scholar 

  • Huang Z, Maness PC, Blake DM, Wolfrum EJ, Smolinski SL, Jacoby WA (2000) Bactericidal mode of titanium dioxide photocatalysis. J Photochem Photobiol A 130:163–170

    Article  CAS  Google Scholar 

  • Kaneko M, Okura I (2002) Photocatalysis: science and technology. Springer, Berlin

    Google Scholar 

  • Karunakaran C, Rajeswari V, Gomathisankar P (2011) Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag–ZnO and ZnO. Solid State Sci 13:923–928

    Article  CAS  Google Scholar 

  • Khalil A, Gondal MA, Dastageer MA (2011) Augmented photocatalytic activity of palladium incorporated ZnO nanoparticles in the disinfection of Escherichia coli microorganism from water. Appl Catal A 402:162–167

    Article  CAS  Google Scholar 

  • Kim JY, Lee C, Cho M, Yoon J (2008) Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42:356–362

    Google Scholar 

  • Koizumi Y, Taya M (2002) Kinetic evaluation of biocidal activity of titanium dioxide against phage MS2 considering interaction between the phage and photocatalyst particles. Biochem Eng J 12:107–116

    Article  CAS  Google Scholar 

  • Kubacka A, Ferrer M, Martinez-Arias A, Fernandez-Garcia M (2008) Ag promotion of TiO2-anatase disinfection capability: study of Escherichia coli inactivation. Appl Catal B 84:87–93

    Article  CAS  Google Scholar 

  • Leung TY, Chan CY, Hu C, Yu JC, Wong PK (2008) Photocatalytic disinfection of marine bacteria using fluorescent light. Water Res 42:4827–4837

    Article  CAS  Google Scholar 

  • Lonnen J, Kilvington S, Kehoe SC, Al-Touati F, McGuigan KG (2005) Solar and photocatalytic disinfection of protozoan, fungal and bacterial microbes in drinking water. Water Res 39:877–883

    Article  CAS  Google Scholar 

  • Lyon DY, Brown DA, Alvarez PJJ (2008) Implications and potential applications of bactericidal fullerene water suspensions: effect of nc60 concentration, exposure conditions and shelf life. Water Sci Technol 57:1533–1538

    Google Scholar 

  • Mahmood MA, Baruah S, Dutta J (2011a) Enhanced visible light photocatalysis by manganese doping or rapid crystallization with ZnO nanoparticles. Mater Chem Phys 130:531–535

    Article  CAS  Google Scholar 

  • Mahmood MA, Baruah S, Anal AK, Dutta J (2011b) Microbial pathogen inactivation using heterogeneous photocatalysis, environmental chemistry for a sustainable world: Part 2: remediation of air and water pollution, Springer. doi:10.1007/978-94-007-2439-6_13

  • Marugan J, van Grieken R, Sordo C, Cruz C (2008) Kinetics of the photocatalytic disinfection of Escherichia coli suspensions. Appl Catal B 82:27–36

    Article  CAS  Google Scholar 

  • Munoz I, Rieradevall J, Torrades F, Peral J, Domenech X (2005) Environmental assessment of different solar driven advanced oxidation processes. Sol Energy 79:369–375

    Article  CAS  Google Scholar 

  • Ogino C, Farshbaf Dadjour M, Takaki K, Shimizu N (2006) Enhancement of sonocatalytic cell lysis of Escherichia coli in the presence of TiO2. Biochem Eng J 32:100–105

    Article  CAS  Google Scholar 

  • Ohno T, Tokieda K, Higashida S, Matsumura M (2003) Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl Catal A 244:383–391

    Article  CAS  Google Scholar 

  • Pal A, Pehkonen SO, Yu LE, Ray MB (2007) Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light. J Photochem Photobiol A 186:335–341

    Article  CAS  Google Scholar 

  • Patnaik P (2007) A comprehensive guide to the hazardous properties of chemical substances. Wiley, Hoboken

    Book  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700

    Article  CAS  Google Scholar 

  • Rajendran R, Balakumar C, Ahammed HAM, Jayakumar S, Vaideki K, Rajesh EM (2010) Use of zinc oxide nano particles for production of antimicrobial textiles. Int J Eng Sci Technol 2:202–208

    Google Scholar 

  • Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170:560–569

    Article  CAS  Google Scholar 

  • Rincon AG, Pulgarin C (2004a) Bactericidal action of illuminated TiO2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time. Appl Catal B 49:99–112

    Article  CAS  Google Scholar 

  • Rincon AG, Pulgarin C (2004b) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: implications in solar water disinfection. Appl Catal B 51:283–302

    Google Scholar 

  • Rincon AG, Pulgarin C, Adler N, Peringer P (2001) Interaction between E. coli inactivation and DBP-precursors—dihydroxybenzene isomers—in the photocatalytic process of drinking-water disinfection with TiO2. J Photochem Photobiol A 139:233–241

    Google Scholar 

  • Rodriguez J, Paraguay-Delgado F, Lopez A, Alarcon J, Estrada W (2010) Synthesis and characterization of ZnO nanorod films for photocatalytic disinfection of contaminated water. Thin Solid Films 519:729–735

    Article  CAS  Google Scholar 

  • Sadiq R, Rodriguez MJ (2004) Disinfection by-products (DPBs) in drinking water and predictive models for their occurrence: a review. Sci Total Environ 321:21–46

    Article  CAS  Google Scholar 

  • Sapkota A, Anceno AJ, Baruah S, Shipin OV, Dutta J (2011) Zinc oxide nanorod mediated visible light photoinactivation of model microbes in water. Nanotechnology 22:art. no. 215703

    Google Scholar 

  • Sayilkan F, Asilturk M, Kiraz N, Burunkaya E, Arpac E, Sayilkan H (2009) Photocatalytic antibacterial performance of Sn4+-doped TiO2 thin films on glass substrate. J Hazard Mater 162:1309–1316

    Article  CAS  Google Scholar 

  • Sichel C, de Cara M, Tello J, Blanco J, Fernandes-Ibanes P (2007) Solar photocatalytic disinfection of agricultural pathogenic fungi: Fusarium species. Appl Catal B 74:152–160

    Article  CAS  Google Scholar 

  • Sontakke S, Modak J, Madras G (2011) Effect of inorganic ions, H2O2 and pH on the photocatalytic inactivation of Escherichia coli with silver impregnated combustion synthesized TiO2 catalyst. Appl Catal B 106:453–459

    Article  CAS  Google Scholar 

  • Subrahmanyam M, Boule P, Durga Kumari V, Naveen Kumar D, Sancelme M, Rachel A (2008) Pumice stone supported titanium dioxide for removal of pathogen in drinking water and recalcitrant in wastewater. Sol Energy 82:1099–1106

    Article  CAS  Google Scholar 

  • Sugunan A, Dutta J (2008) Pollution treatment, remediation and sensing. Nanotechnology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 125–146

  • Sun Q, Xu Y (2010) Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water. J Phys Chem C 114:18911–18918

    Article  CAS  Google Scholar 

  • Tatsuma T, Takeda S, Saitoh S, Ohko Y, Fujishima A (2003) Bactericidal effect of an energy storage TiO2-WO3 photocatalyst in dark. Electrochem Commun 5:793–796

    Article  CAS  Google Scholar 

  • Ullah R, Dutta J (2008) Photocatalytic degradation of organic dyes with manganese-doped ZnO nanoparticles. J Hazard Mater 156:194–200

    Article  CAS  Google Scholar 

  • Wang X, Gong WQ (2007) Preparation and photocatalytic bactericidal action of Fe3+ doped nanocrystalline TiO2 film. J Wuhan Univ Tech 29:50–53

    CAS  Google Scholar 

  • Wong MS, Chu WC, Sun DS, Huang HS, Chen JH, Tsai PJ et al (2006) Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Appl Environ Microbiol 72:6111–6116

    Article  CAS  Google Scholar 

  • Yan G, Chen J, Hua Z (2009) Roles of H2O2 and OH radical in bactericidal action of immobilized TiO2 thin-film reactor: an ESR study. J Photochem Photobiol A 207:153–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge partial financial support from the National Nanotechnology Center of the National Science & Technology Development Agency (NSTDA), Ministry of Science and Technology (MOST), Thailand and the Centre of Excellence in Nanotechnology at the Asian Institute of Technology, Thailand. MAM would like to acknowledge the PhD fellowship of the University of Engineering and Technology Peshawar, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, M.A., Baruah, S., Anal, A.K. et al. Heterogeneous photocatalysis for removal of microbes from water. Environ Chem Lett 10, 145–151 (2012). https://doi.org/10.1007/s10311-011-0347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-011-0347-x

Keywords

Navigation