Skip to main content

Advertisement

Log in

Decay effects of pollutants on stony materials in the built environment

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

This review discuss the effects that pollutants have on stony materials applied on the built environment, illustrating different macroscopical products (pathologies) that can affect historical and modern architectural works. The impact of the decay processes is related to the susceptibility of the materials, environmental conditions and the kind of pollutants that degrade building materials. Here are reviewed the main decay processes resulting from the actions of gases, particulate matter and solutions (from wet deposition to capillary rising and including circulating waters such as run-off), showing that besides atmospheric pollution, also pollutants rising from the ground can cause important deterioration on building materials. Following, the use of tracers is considered for the study of pollutant sources and migration, including neoformation minerals (that might also constitute markers of environmental conditions) and chemical tracers, giving special attention to isotopic tracers, namely to proposals regarding the use of some stable and radioactive isotopes for the study of pollutants that have strong potential but have not been tested yet are also presented. At the end of this chapter, some final considerations are made on the problem of durability assessment of materials in the built environment and also on the use of tracers to assess the origin of damaging compounds in the built environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen GC, El-Turki A, Hallam KR, McLaughlin D, Stacey M (2000) Role of NO2 and SO2 in degradation of limestone. British Corros J 35:35–38. doi:10.1179/000705900101501047

    Article  Google Scholar 

  • Alves C (2009a) Erosion of carbonate rocks under water-flowing (fountain) conditions. IRF’2009, 3rd international conference on integrity, reliability & failure, Porto. http://paginas.fe.up.pt/clme/IRF2009/PROCEEDINGS/PAPERS/P0326.pdf

  • Alves C (2009b) Salt weathering of natural building stones: a review of the influence of rock characteristics. In: Cornejo DN, Haro JL (eds) Building materials: properties, performance and applications. Nova Science Publishers, New York, pp 57–94

    Google Scholar 

  • Alves C (2010) “White” crusts on recent buildings. Mater Sci Forum 636–637:1300–1305. doi:10.4028/www.scientific.net/MSF.636-637.1300

    Article  Google Scholar 

  • Alves C, Sequeira Braga MA (1994) Niter and gypsum and their decay effects in a granitic monument of Braga (Portugal). In: Proceedings of the 16th general meeting IMA, p 9

  • Alves CAS, Sequeira Braga MA (2000) Decay effects associated with soluble salts on granite buildings of Braga (NW Portugal). In: Cotter-Howells JD, Campbell LS, Valsami-Jones E, Batchelder M (eds) Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management. Mineralogical Society of Great Britain & Ireland, London, pp 181–199

    Google Scholar 

  • Amoroso GG, Fassina V (1983) Stone decay and conservation: atmospheric pollution, cleaning, consolidation and protection. Elsevier, Amsterdam

    Google Scholar 

  • Arnold A, Zehnder K (1991) Monitoring wall paintings affected by soluble salts. The conservation of wall paintings, Getty Conservation Institute, pp 103–135. Available online at http://getty.edu/conservation/publications/pdf_publications/wall_paintings.pdf. Accessed Aug 2010

  • Begonha A, Sequeira Braga MA (1996) Black crusts and thin black layers in granitic monuments: their characterization and the role of air pollution. In: Riederer J (ed) Proceedings of the 8th international congress on deterioration of conservation of stone. Möller Druck und Verlag, Berlin, pp 371–375

    Google Scholar 

  • Bityukova L, Shogenova A, Birke M (2000) Urban geochemistry: a study of elements distribution in the topsoil’s of Tallinn (Estonia). Environ Geochem Health 22:173–195. doi:10.1023/A:1006754326260

    Article  CAS  Google Scholar 

  • Brenninkmeijer CAM, Röckmann T, Braunlich M, Jöckel P, Bergamaschi P (1999) Review of progress in isotope studies of atmospheric carbon monoxide. Chemosphere Glob Change Sci 1:33–52. doi:10.1016/S1465-9972(99)00018-5

    Article  CAS  Google Scholar 

  • Camuffo D (1990) Acidic precipitation research in Italy. In: Bresser AH, Salomons W (eds) Acidic precipitation 5, international overview and assessment. Springer, New York, pp 229–265

    Google Scholar 

  • Camuffo D, Del-Monte M, Sabbioni C, Vittori O (1982) Wetting, deterioration and visual features of stone surfaces in an urban area. Atmos Environ 16:253–2259. doi:10.1016/0004-6981(82)90296-7

    Google Scholar 

  • Charola AE, Ware R (2002) Acid deposition and the deterioration of stone: a brief review of a broad topic. In: Siegesmund GS, Vollbrecht A, Weiss T (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Special Publications 205, Geological Society, London, pp 393–406. doi:10.1144/GSL.SP.2002.205.01.28

    Google Scholar 

  • Cultrone G, De-la-Torre M, Sebastian JEM, Cazalla O (2000) Behavior of Brick Samples in Aggressive Environments. Water Air Soil Pollut 119:191–207. doi:10.1023/A:1005142612180

    Article  CAS  Google Scholar 

  • Derbez M, Lefèvre RA (1996) Le contenu microparticulaire des croûtes gypseuses de la Cathédrale Saint-Gatien de Tours: comparaison avec l’air et la pluie. In: Riederer J (ed) Proceedings of the 8th international congress on deterioration and conservation of stone, Berlin, Germany. Möller Druck und Verlag, Berlin, pp 359–370

  • Dibb TE, Hughes DW, Poole ABQ (1983) The identification of critical factors affecting rock durability in marine environments. Q J Eng Geol Hydrogeol 16:149–161. doi:10.1144/GSL.QJEG.1983.016.02.08

    Article  Google Scholar 

  • Eglinton M (1998) Resistance of concrete to destructive agencies. In: Hewlett PC (ed) Lea’s chemistry of cement and concrete. Elsevier, Oxford, pp 299–342

    Google Scholar 

  • Farny JA, Kerkhoff B (2007) Concrete technology: diagnosis and control of alkali-aggregate reactions in concrete. Portland Cement Association, Skokie, p 25

    Google Scholar 

  • Fellenberg G (2000) The chemistry of pollution. Wiley, Chichester, p 174

    Google Scholar 

  • Feng X-T, Chen S, Li S (2001) Effects of water chemistry on microcracking and compressive strength of granite. Int J Rock Mech Min Sci 38:557–568. doi:10.1016/S1365-1609(01)00016-8

    Article  Google Scholar 

  • French WJ (1997) Influence of groundwater chemistry and motion on highway construction materials. In: Hawkins AB (ed) Ground chemistry: implications for construction. Balkema, Rotterdam, pp 199–210

    Google Scholar 

  • Furlan V, Girardet F (1992) Pollution atmosphérique et réactivité de pierres. In: Delgado Rodrigues J, Henriques F, Telmo Jeremias F (eds) Proceedings of the 7th international congress on deterioration and conservation of stone. Laboratório Nacional de Engenharia Civil, Lisbon, pp 153–161

    Google Scholar 

  • Gaffney JS, Marley NA (2009) The impacts of combustion emissions on air quality and climate—from coal to biofuels and beyond. Atmos Environ 43:23–36. doi:10.1016/j.atmosenv.2008.09.016

    Article  CAS  Google Scholar 

  • Gat JR (1980) The isotopes of hydrogen and oxygen in precipitation. In: Fritz P, Fontes JC (eds) Handbook of environmental geochemistry. Elsevier, Amsterdam, pp 21–47

    Google Scholar 

  • Gerst S, Quay P (2001) Deuterium component of the global molecular hydrogen cycle. J Geophys Res 106:5021–5031. doi:10.1029/2000JD900593

    Article  CAS  Google Scholar 

  • Gómez-Heras M, Benavente D, Álvarez de Buergo M, Fort R (2004) Soluble salt minerals from pigeon droppings as potential contributors to the decay of stone based cultural heritage. Eur J Mineral 16(3):505–509. doi:10.1127/0935-1221/2004/0016-0505

    Article  Google Scholar 

  • Goudie AS, Viles HA (1997) Salt weathering hazards. Wiley, New Jersy

    Google Scholar 

  • Grossi CM, Brimblecombe P, Esbert RM, Alonso FJ (2007) Color changes in architectural limestones from pollution and cleaning. Color Res Appl 32:320–331. doi:10.1002/col.20322

    Article  Google Scholar 

  • Grossi C, Bonazza A, Brimblecombe P, Harris I, Sabbioni C (2008) Predicting twenty-first century recession of architectural limestone in European cities. Environ Geol 56:455–461. doi:10.1007/s00254-008-1442-6

    Article  CAS  Google Scholar 

  • Hammecker C (1995) The importance of the petrophysical properties and external factors in the stone decay on monuments. Pure Appl Geophys 145:337–361. doi:10.1007/BF00880275

    Article  Google Scholar 

  • Haneef SJ, Dickinson C, Johnson JB, Thompson GE, Wood GC (1992) Simulation of the degradation of coupled stones by artificial acid rain. Stud Conserv 37:105–112

    Article  Google Scholar 

  • Happell JD, Östlund G, Mason AS (2004) A history of atmospheric tritium gas (HT) 1950–2002. Tellus B 56:183–193. doi:10.1111/j.1600-0889.2004.00103.x

    Article  Google Scholar 

  • Hawkins AB, Pinches GM (1987) Cause and significance of heave at Llandough hospital, Cardiff—a case history of ground floor heave due to gypsum growth. Q J Eng Geol Hydrogeol 20:41–57. doi:10.1144/GSL.QJEG.1987.020.01.05

    Article  Google Scholar 

  • Heaton THE (1987) 15N/14N ratios of nitrate and ammonium in rain in Pretoria, South Africa. Atmos Environ 21:843–852. doi:10.1016/0004-6981(87)90080-1

    Article  CAS  Google Scholar 

  • Heinemeier J, Jungner H, Lindroos A, Ringbom A, von Konow T, Rud N (1997) AMS 14C dating of lime mortar. Nucl Instrum Methods Phys Res B 123:487–495. doi:10.1016/S0168-583X(96)00705-7

    Article  CAS  Google Scholar 

  • Herman DC, Maier RM (2000) Consequences of biogeochemical cycles gone wild. In: Maier RM, Pepper IL, Gerba CP (eds) Environmental microbiology. Academic Press, London, pp 347–361

    Google Scholar 

  • Hildemann LM, Markowski GR, Cass G (1991) Chemical composition of emissions from urban sources of fine organic aerosol. Environ Sci Technol 25:744–759. doi:10.1021/es00016a021

    Article  CAS  Google Scholar 

  • ICOMOS-ISCS (2008) Illustrated glossary on stone deterioration patterns. http://www.international.icomos.org/publications/monuments_and_sites/15/pdf/Monuments_and_Sites_15_ISCS_Glossary_Stone.pdf

  • Inkpen R (2003) The whole building and patterns of degradation. In: Brimblecombe P (ed) The effects of air pollution on the built environment. Imperial College Press, London, pp 393–422

    Google Scholar 

  • Janhäll S, Olofsson KFG, Anderson PU, Pettersson JBC, Hallquist M (2009) Evolution of the urban aerosol during winter temperature inversion episodes. Atmos Environ 40:5355–5366. doi:10.1016/j.atmosenv.2006.04.051

    Article  Google Scholar 

  • Jenkin ME (2004) Analysis of sources and portioning of oxidant in the UK–Part2: contributions of nitrogen dioxide emissions and background ozone at a kerbside location in London. Atmos Environ 38:5131–5138. doi:10.1016/j.atmosenv.2004.05.055

    Article  CAS  Google Scholar 

  • Jenkin ME, Clemitshaw KC (2000) Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmos Environ 34:2499–2527. doi:10.1016/S1352-2310(99)00478-1

    Article  CAS  Google Scholar 

  • Jenkin ME, Utembe SR, Derwent RG (2008) Modelling the impact of elevated primary NO2 and HONO emissions on regional scale oxidant formation in the UK. Atmos Environ 42:323–336. doi:10.1016/j.atmosenv.2007.09.021Johanson1990

    Article  CAS  Google Scholar 

  • Johansson IG, Lindquist O, Mangio RE (1988) Corrosion of calcareous stones in humid air containing SO2 and NO2. Durab Build Mater 5:439–449

    CAS  Google Scholar 

  • Jouzel J, Hoffmann G, Koster RD, Masson V (2000) Water isotopes in precipitation: data/model comparison for present-day and past climates. Quat Sci Rev 19:363–379. doi:10.1016/S0277-3791(99)00069-4

    Article  Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam, pp 519–576

    Google Scholar 

  • Kloppmann W, Bromblet P, Vallet JM, Vergès-Belmin V, Rolland O, Guerrot C, Gosselin C (2011) Building materials as intrinsic sources of sulphate: a hidden face of salt weathering of historical monuments investigated through multi-isotope tracing (B, O, S). Sci Total Environ 409:1658–1669. doi:10.1016/j.scitotenv.2011.01.008

    Article  CAS  Google Scholar 

  • Krouse HR (1980) Sulphur isotopes in our environment. In: Fritz P, Fontes JC (eds) Handbook of environmental geochemistry. Elsevier, Amsterdam, pp 435–471

    Google Scholar 

  • Létolle R, Gegout P, Rafai N, Revertegat E (1992) Stable isotopes of carbon and oxygen for the study of carbonation/decarbonation processes in concrete. Cem Concr Res 22:235–240. doi:10.1016/0008-8846(92)90061-Y

    Article  Google Scholar 

  • Levin I, Hesshaimer V (2000) Radiocarbon—a unique tracer of global carbon cycle dynamics. Radiocarbon 42:69–80

    CAS  Google Scholar 

  • Lewin SZ (1982) The mechanism of masonry decay through crystallization. Conservation of historic stone buildings and monuments. National Academy Press, Washington, DC, pp 120–144. Available online at http://www.nap.edu/openbook.php?record_id=514&page=120. Accessed Aug 2010

  • Lockhart LB (1962) Natural radioactive isotopes in the atmosphere at Kodiak and Wales, Alaska. Tellus 14:350–355. doi:10.1111/j.2153-3490.1962.tb01347.x

    Article  Google Scholar 

  • Macleod G, Fallick AE, Hall AJ (1991) The mechanism of carbonate growth on concrete structures, as elucidated by carbon and oxygen isotope analyses. Chem Geol 86:335–343. doi:10.1016/0168-9622(91)90015-O

    CAS  Google Scholar 

  • Maravelaki-Kalaitzaki P, Biscontin G (1999) Origin, characteristics and morphology of weathering crusts on Istria stone in Venice. Atmos Environ 33:1699–1709. doi:10.1016/S13522310(98)00263-5

    Article  CAS  Google Scholar 

  • McAlister JJ, Smith BJ, Torok A (2006) Element partitioning and potential mobility within surface dusts on buildings in a polluted urban environment, Budapest. Atmos Environ 40:6780–6790. doi:10.1016/j.atmosenv.2006.05.071

    Article  CAS  Google Scholar 

  • McBride JP, Moore RE, Witherspoon JP, Blanco RE (1978) Radiological impact of airborne effluents of coal and nuclear plants. Science 202:1045–1050. doi:10.1126/science.202.4372.1045

    Article  CAS  Google Scholar 

  • Miglio BF, Richardson DM, Yates TS, West D (2000) Assessment of the durability of porous limestones: specification and interpretation of test data in UK practice. Dimension stone cladding: design, construction, evaluation, and repair. ASTM STP 1394:57–70

    Google Scholar 

  • Neville A (2004) The confused world of sulfate attack on concrete. Cem Concr Res 34(8):1275–1296. doi:10.1016/j.cemconres.2004.04.004

    Article  CAS  Google Scholar 

  • Nord AG, Holenyi K (1999) Sulphur deposition and damage on limestone and sandstone in Stockholm City buildings. Water Air Soil Pollut 109:147–162. doi:10.1023/A:1005037617131

    Article  CAS  Google Scholar 

  • Ogawa M, Yoshida N (2005) Intramolecular distribution of stable nitrogen and oxygen isotopes of nitrous oxide emitted during coal combustión. Chemosphere 61:877–887. doi:10.1016/j.chemosphere.2005.04.096

    Article  CAS  Google Scholar 

  • Parmar GR, Rao NN (2009) Emerging control technologies for volatile organic compounds. Crit Rev Environ Sci Technol 39:41–78. doi:10.1080/10643380701413658

    Article  CAS  Google Scholar 

  • Pawelczyk S, Pazdur A (2004) Carbon isotopic composition of tree rings as tool for bimonitoring CO2 level. Radiocarbon 46:701–719

    CAS  Google Scholar 

  • Pearson FJ, Rightmire CT (1980) Sulphur and oxygen isotopes in aqueous sulphur compounds. In: Fritz P, Fontes JC (eds) Handbook of environmental geochemistry. Elsevier, Amsterdam, pp 227–257

    Google Scholar 

  • Penkett SA, Jones BMR, Brice KA, Eggleton AEJ (1979) The importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater. Atmos Environ 13:123–137. doi:10.1016/j.atmosenv.2007.10.065

    Article  CAS  Google Scholar 

  • Pilkey OH, Pilkey-Jarvis L (2007) Useless arithmetic: why environmental scientists can’t predict the future. Columbia University Press, New York

    Google Scholar 

  • Puppala AJ, Saride S, Dermatas D, Al-Shamrani M, Chikyala V (2010) Forensic investigations to evaluate sulfate-induced heave attack on a tunnel shotcrete liner. J Mater Civ Eng 22:914–922. doi:10.1061/(ASCE)MT.1943-5533.0000087

    Article  CAS  Google Scholar 

  • Pye K, Mottershead DN (1995) Honeycomb weathering of carboniferous sandstone in a sea wall at Weston-super-Mare, UK. Q J Eng Geol Hydrogeol 28:333–347. doi:10.1144/GSL.QJEGH.1995.028.P4.03

    Article  Google Scholar 

  • Pye K, Schiavon N (1989) Cause of sulphate attack on concrete, render and stone indicated by sulphur isotope ratios. Nature 342:663–664. doi:10.1038/342663a0

    Article  CAS  Google Scholar 

  • Reimann C, de Caritat P (2000) Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environ Sci Technol 34:5084–5091. doi:10.1021/es001339o

    Article  CAS  Google Scholar 

  • Robbins NS, Kinniburgh DG, Bird MJ (1997) Generation of acid groundwater beneath City Road, London. In: Hawkins AB (ed) Ground chemistry: implications for construction. Balkema, Rotterdam, pp 225–232

    Google Scholar 

  • Rodriguez-Navarro C, Hansen E, Sebastian E, Ginell WS (1997) The role of clays in the decay of ancient Egyptian limestone sculptures. JAIC 36:151–163. Available online at http://cool.conservationus.org/jaic/articles/jaic36-02-005.html. Accessed Aug 2010

  • Sabbioni C (2003) Mechanisms of air pollution damage to stone. In: Brimblecombe P (ed) The effects of air pollution on the built environment. Imperial College Press, London, pp 63–106

    Google Scholar 

  • Sabbioni C, Zappia G, Ghedini N, Gobbi G, Favoni O (1998) Black crusts on ancient mortars. Atmos Environ 32:215–223. doi:10.1016/S1352-2310(97)00259-8

    Article  CAS  Google Scholar 

  • Sabbioni C, Ghedini N, Bonazza A (2003) Organic anions in damage layers on monuments and buildings. Atmos Environ 37:1261–1269. doi:10.1016/S1352-2310(02)01025-7

    Article  CAS  Google Scholar 

  • Saiz-Jimenez C (1993) Deposition of airborne organic pollutants on historic buildings. Atmos Environ 27B:77–85. doi:10.1016/0957-1272(93)90047-A

    CAS  Google Scholar 

  • Sanjurjo-Sánchez J, Alves C (2011) Decay effects of pollutants on materials applied in the built environment. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world. Vol 2: remediation of air and water pollution, Springer, Berlin, pp 47–121. doi:10.1007/978-94-007-2439-6_2

  • Sanjurjo-Sánchez J, Vidal Romaní JR, Fernández-Mosquera D, Alves CA (2008) Study of origin and composition of coatings in a monument built with granitic rocks, by SEM, XRD, XRF and DTATGA. X-Ray Spectrom 37:346–354. doi:10.1002/xrs.1019

    Article  Google Scholar 

  • Sanjurjo-Sánchez J, Vidal-Romani JR, Alves CAS, Fernández-Mosquera D (2009) Origin of gypsum-rich coatings on historic buildings. Water Air Soil Pollut 204:53–68. doi:10.1007/s11270-009-0025-9

    Article  Google Scholar 

  • Sanjurjo-Sánchez J, Vidal-Romaní JR, Alves CAS (2011) Deposition of particles on gypsum-rich coatings of Heritage buildings in urban and rural environments. Construct Build Mater 25:813-822. doi:10.1016/j.conbuildmat.2010.07.001

  • Sanjurjo-Sánchez J, Vidal Romaní JR, Alves C (2012) Comparative analysis of coatings on granitic substrates from urban and natural settings (NW Spain). Geomorphology 138:231–242. doi:10.1016/j.geomorph.2011.09.008

    Article  Google Scholar 

  • Savin SM (1980) Oxygen and hydrogen isotope effects in low-temperature mineral-water interactions. In: Fritz P, Fontes JC (eds) Handbook of environmental isotope geochemistry, vol 1. Elsevier, Amsterdam, pp 283–327

    Google Scholar 

  • Silva B, Rivas T, Prieto B (1996) Relation between type of soluble salts and decay forms in granitic coastal churches in Galicia (NW Spain). Origin, mechanisms, and effects of salts on degradation of monuments in marine and continental environments. Protection and conservation of the European cultural heritage research report no. 4, pp 183–190

  • Simão J, Ruiz-Agudo E, Rodriguez-Navarro C (2006) Effects of particulate matter from gasoline and diesel vehicle exhaust emissions on silicate stones sulfation. Atmos Environ 40:6905–6917. doi:10.1016/j.atmosenv.2006.06.016

    Article  Google Scholar 

  • Simoneit BR, Mazuret MA (1981) Air pollution: the organic components. Crit Rev Environ Control 11:219–275. doi:10.1080/10643388109381689

    Article  CAS  Google Scholar 

  • Song XH, Polissar AV, Hopke PK (2001) Sources of the particle composition in the northeastern US. Atmos Environ 35:5277–5286. doi:10.1016/S1352-2310(01)00338-7

    Article  CAS  Google Scholar 

  • Steiger W, Dannecker W (1994) Determination of wet and dry deposition of atmospheric pollutants on building stones by field exposure experiments. III international symposium on the conservation of monuments in the Mediterranean Basin, Venice, pp 171–177

  • Stevens CM, Krout L, Walling D, Venters A, Engelkemeir A, Ross LE (1972) The carbon isotopic composition of atmospheric carbon monoxide. Earth Planet Sci Lett 16:147–165. doi:10.1016/0012-821X(72)90183-5

    Article  CAS  Google Scholar 

  • Stojanovska Z, Nedelkovski D, Ristova M (2010) Natural radioactivity and human exposure by raw materials and end product from cement industry used as building materials. Radiat Meas 45:969–972. doi:10.1016/j.radmeas.2010.06.023

    Article  CAS  Google Scholar 

  • Torfs K, Van-Grieken R (1997) Chemical relations between atmospheric aerosols, deposition and stone decay layers on historic buildings at the Mediterranean coast. Atmos Environ 31(15):2179–2192. doi:10.1016/S1352-2310(97)00038-1

    Article  CAS  Google Scholar 

  • Torraca G (1988) Air pollution and the conservation of building materials. In: Rossvall J, Aleby S (eds) Air pollution and conservation. Safeguarding our architectural heritage. Elsevier, Amsterdam, pp 199–204

    Google Scholar 

  • Trudgill ST, Viles HA, Inkpen R, Moses C, Gosling W, Yates T, Collier P, Smith DI, Cook RU (2001) Twenty-year weathering remeasurements at St Paul’s Cathedral, London. Earth Surf Proc Land 26:1129–1142. doi:10.1002/esp.260

    Article  Google Scholar 

  • Tsunogai U, Yosuke Hachisu Y, Komatsu DD, Nakagawa F, Gamo T, Akiyama K (2003) An updated estimation of the stable carbon and oxygen isotopic compositions of automobile CO emissions. Atmos Environ 37:4901–4910. doi:10.1016/j.atmosenv.2003.08.008

    Article  CAS  Google Scholar 

  • Turkington AV, Paradise TR (2005) Sandstone weathering: a century of research and innovation. Geomorphology 67:229–253. doi:10.1016/j.geomorph.2004.09.028

    Article  Google Scholar 

  • Tzortzis M, Tsertos H, Christofides S, Christodoulides G (2003) Gamma radiation measurements and dose rates in commercially-used natural tiling rocks (granites). J Environ Radioact 70:223–235. doi:10.1016/S0265-931X(03)00106-1

    Article  CAS  Google Scholar 

  • Vallet JM, Gosselin C, Bromblet P, Rolland O, Vergès-Belmin V, Kloppmann W (2006) Origin of salts in stone monument degradation using sulphur and oxygen isotopes: first results of the Bourges cathedral (France). J Geochem Explor 88:358–362. doi:10.1016/j.gexplo.2005.08.075

    Article  CAS  Google Scholar 

  • WHO (2000) Air quality guidelines for Europe. European Series, No 91, 2nd edn. WHO Regional Publications, Copenhagen

    Google Scholar 

  • Widory D (2007) Nitrogen isotopes: tracers of origin and processes affecting PM10 in the atmosphere of Paris. Atmos Environ 41:2382–2390. doi:10.1016/j.atmosenv.2006.11.009

    Article  CAS  Google Scholar 

  • Widory D, Javoy M (2003) The carbon isotope composition of atmospheric CO2 in Paris. Earth Planet Sci Lett 215:289–298. doi:10.1016/S0012-821X(03)00397-2

    Article  CAS  Google Scholar 

  • Winkler EM (1994) Stone in architecture. Properties, durability. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

Portuguese-Spanish collaboration Project ‘Ação Integrada E-141/10’ (Fundação das Universidades Portuguesas)/‘Acción Integrada PT2009-0077’ (Ministerio de Ciencia e Innovación). Financial support from Fundação para a Ciência e Tecnologia (Portugal) with FEDER (European Union) and Portuguese funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Sanjurjo-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanjurjo-Sánchez, J., Alves, C. Decay effects of pollutants on stony materials in the built environment. Environ Chem Lett 10, 131–143 (2012). https://doi.org/10.1007/s10311-011-0346-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-011-0346-y

Keywords

Navigation