Skip to main content

Advertisement

Log in

Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene

  • Metabolic Engineering and Synthetic Biology - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Beta-elemene, a sesquiterpene and the major component of the medicinal herb Curcuma wenyujin, has antitumor activity against various types of cancer and could potentially serve as a potent antineoplastic drug. However, its current mode of production through extraction from plants has been inefficient and suffers from limited natural resources. Here, we engineered a yeast cell factory for the sustainable production of germacrene A, which can be transformed to beta-elemene by a one-step chemical reaction in vitro. Two heterologous germacrene A synthases (GASs) converting farnesyl pyrophosphate (FPP) to germacrene A were evaluated in yeast for their ability to produce germacrene A. Thereafter, several metabolic engineering strategies were used to improve the production level. Overexpression of truncated 3-hydroxyl-3-methylglutaryl-CoA reductase and fusion of FPP synthase with GAS, led to a sixfold increase in germacrene A production in shake-flask culture. Finally, 190.7 mg/l of germacrene A was achieved. The results reported in this study represent the highest titer of germacrene A reported to date. These results provide a basis for creating an efficient route for further industrial application re-placing the traditional extraction of beta-elemene from plant sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agger SA, Lopez-Gallego F, Hoye TR, Schmidt-Dannert C (2008) Identification of sesquiterpene synthases from Nostoc punctiforme PCC 73102 and Nostoc sp. strain PCC 7120. J Bacteriol 190:6084–6096. doi:10.1128/JB.00759-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74. doi:10.1126/science.1191652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Albertsen L, Chen Y, Bach LS, Rattleff S, Maury J, Brix S, Nielsen J, Mortensen UH (2011) Diversion of Flux toward sesquiterpene production in Saccharomyces cerevisiae by fusion of host and heterologous enzymes. Appl Environ Microb 77:1033–1040. doi:10.1128/Aem.01361-10

    Article  CAS  Google Scholar 

  4. Bennetta MH, Mansfield JW, Lewis MJ, Beale MH (2002) Cloning and expression of sesquiterpene synthase genes from lettuce (Lactuca sativa L.). Phytochemistry 60:255–261

    Article  Google Scholar 

  5. Borodina I, Nielsen J (2014) Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnol J 9:609–620. doi:10.1002/biot.201300445

    Article  CAS  PubMed  Google Scholar 

  6. Chen Y, Partow S, Scalcinati G, Siewers V, Nielsen J (2012) Enhancing the copy number of episomal plasmids in Saccharomyces cerevisiae for improved protein production. FEMS Yeast Res 12:598–607. doi:10.1111/j.1567-1364.2012.00809.x

    Article  CAS  PubMed  Google Scholar 

  7. Donald KAG, Hampton RY, Fritz IB (1997) Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae. Appl Environ Microb 63:3341–3344

    CAS  Google Scholar 

  8. Fischer MJC, Meyer S, Claudel P, Bergdoll M, Karst F (2011) Metabolic engineering of monoterpene synthesis in yeast. Biotechnol Bioeng 108:1883–1892. doi:10.1002/bit.23129

    Article  CAS  PubMed  Google Scholar 

  9. Gao Y (2012) The study of microbial synthesis of germacrene A the precursor of beta-elemene. Master dissertation. Hangzhou Normal University

  10. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345. doi:10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  11. Gopfert JC, Macnevin G, Ro DK, Spring O (2009) Identification, functional characterization and developmental regulation of sesquiterpene synthases from sunflower capitate glandular trichomes. BMC Plant Biol 9:86. doi:10.1186/1471-2229-9-86

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karst F, Plochocka D, Meyer S, Szkopinska A (2004) Farnesyl diphosphate synthase activity affects ergosterol level and proliferation of yeast Saccharomyces cerevisae. Cell Biol Int 28:193–197. doi:10.1016/j.cellbi.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  13. Kraker JD, Franssen MCR, Groot AD, König WA, Bouwmeester HJ (1998) (+)-Germacrene A biosynthesis. Plant Physiol 117:1381–1392

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krivoruchko A, Nielsen J (2014) Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Curr Opin Biotechnol 35C:7–15. doi:10.1016/j.copbio.2014.12.004

    Google Scholar 

  15. Liu Q, Majdi M, Cankar K, Goedbloed M, Charnikhova T, Verstappen FW, de Vos RC, Beekwilder J, van der Krol S, Bouwmeester HJ (2011) Reconstitution of the costunolide biosynthetic pathway in yeast and Nicotiana benthamiana. PLoS One 6:e23255. doi:10.1371/journal.pone.0023255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lopez J, Essus K, Kim IK, Pereira R, Herzog J, Siewers V, Nielsen J, Agosin E (2015) Production of beta-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae. Microb Cell Fact 14:84. doi:10.1186/s12934-015-0273-x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lu JJ, Dang YY, Huang M, Xu WS, Chen XP, Wang YT (2012) Anti-cancer properties of terpenoids isolated from Rhizoma Curcumae–a review. J Ethnopharmacol 143:406–411. doi:10.1016/j.jep.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  18. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532. doi:10.1038/nature12051

    Article  CAS  PubMed  Google Scholar 

  19. Ramirez AM, Saillard N, Yang T, Franssen MC, Bouwmeester HJ, Jongsma MA (2013) Biosynthesis of sesquiterpene lactones in pyrethrum (Tanacetum cinerariifolium). PLoS One 8:e65030. doi:10.1371/journal.pone.0065030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MCY, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi:10.1038/nature04640

    Article  CAS  PubMed  Google Scholar 

  21. Scalcinati G, Partow S, Siewers V, Schalk M, Daviet L, Nielsen J (2012) Combined metabolic engineering of precursor and co-factor supply to increase alpha-santalene production by Saccharomyces cerevisiae. Microb Cell Fact 11:117. doi:10.1186/1475-2859-11-117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Siddiqui MS, Thodey K, Trenchard I, Smolke CD (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12:144–170. doi:10.1111/j.1567-1364.2011.00774.x

    Article  CAS  PubMed  Google Scholar 

  23. Siddiqui MS, Thodey K, Trenchard I, Smolke CD (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12:144–170. doi:10.1111/j.1567-1364.2011.00774.x

    Article  CAS  PubMed  Google Scholar 

  24. Sousa EMBD, Martínez J, Chiavone-Filho O, Rosa PTV, Domingos T, Meireles MAA (2005) Extraction of volatile oil from Croton zehntneri Pax et Hoff with pressurized CO2: solubility, composition and kinetics. J Food Eng 69:325–333. doi:10.1016/j.jfoodeng.2004.08.023

    Article  Google Scholar 

  25. Tippmann S, Scalcinati G, Siewers V, Nielsen J (2016) Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed. Biotechnol Bioeng 113:72–81. doi:10.1002/bit.25683

    Article  CAS  PubMed  Google Scholar 

  26. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ooyen AJJ (2007) High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from Xanthophyllomyces dendrorhous. Appl Environ Microb 73:4342–4350. doi:10.1128/Aem.02759-06

    Article  CAS  Google Scholar 

  27. Weinheimer AJ, Youngblood WW, Washecheck PH, Karns TKB, Ciereszko LS (1970) Isolation of the elusive (-)-germacrene-A from the gorgonian, Eunicea mammosa: chemistry of coelenterates XVIII. Tetrahedron Lett 7:497–500

    Article  Google Scholar 

  28. Zhou YJJ, Gao W, Rong QX, Jin GJ, Chu HY, Liu WJ, Yang W, Zhu ZW, Li GH, Zhu GF, Huang LQ, Zhao ZBK (2012) Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. J Am Chem Soc 134:3234–3241. doi:10.1021/ja2114486

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (81325023). Part of this work was funded by the Knut and Alice Wallenberg foundation and the Novo Nordisk Foundation. We thank Yun Chen, Min Chen and Ping Su for providing good comments and help. We also thank Guodong Liu for reading the manuscript and providing valuable suggestions.

Authors’ contribution

JN and LQH conceived and supervised the study. YTH designed and performed the experiments as well as drafting the manuscript. AK assisted with the construction of plasmid pBS01 and participated in experiment design. YJZ participated in the design and provided many valuable suggestions during the study. JCB contributed to Gibson cloning and fermentation experiment. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luqi Huang or Jens Nielsen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhou, Y.J., Bao, J. et al. Metabolic engineering of Saccharomyces cerevisiae for production of germacrene A, a precursor of beta-elemene. J Ind Microbiol Biotechnol 44, 1065–1072 (2017). https://doi.org/10.1007/s10295-017-1934-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1934-z

Keywords

Navigation